pmc logo image
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
Your browser version may not work well with NCBI's web applications. More information here...

Formats:

Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): o1778.
Published online 2008 August 16. doi: 10.1107/S1600536808026056.
PMCID: PMC2960523
2-(3,5-Di-tert-butyl-4-hydroxy­benzyl­sulfan­yl)nicotinic acid
Shahirah Mansor,a Wagee A. Yehye,a Azhar Ariffin,a Noorsaadah Abdul Rahman,a and Seik Weng Nga*
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng/at/um.edu.my
Received August 11, 2008; Accepted August 13, 2008.
Abstract
Two mol­ecules of the title compound, C21H27NO3S, are disposed about a center of inversion, generating an O—H[cdots, three dots, centered]O hydrogen-bonded dimer.
Related literature
For the applications of hindered phenol-based anti­oxidants, see: Kim & Lee (2003 [triangle]); Um & Lee (2005 [triangle]).
Click on image to enlarge
An external file that holds a picture, illustration, etc.
Object name is e-64-o1778-scheme1.jpg Object name is e-64-o1778-scheme1.jpg
Crystal data
  • C21H27NO3S
  • M r = 373.50
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1778-efi1.jpg
  • a = 5.6305 (1) Å
  • b = 9.3489 (2) Å
  • c = 18.8749 (3) Å
  • α = 85.505 (1)°
  • β = 89.453 (1)°
  • γ = 87.834 (1)°
  • V = 989.77 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 100 (2) K
  • 0.25 × 0.15 × 0.05 mm
Data collection
  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.956, T max = 0.991
  • 12688 measured reflections
  • 4507 independent reflections
  • 3746 reflections with I > 2σ(I)
  • R int = 0.028
Refinement
  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.127
  • S = 1.18
  • 4507 reflections
  • 239 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.71 e Å−3
Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808026056/tk2295sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808026056/tk2295Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the University of Malaya (grant No. FS338/2008A) for supporting this study.
supplementary crystallographic information
Comment
The compound (I, Fig. 1) is the precursor for the synthesis of hindered phenol-based antioxidants. Phenol-based antioxidants and their derivative have applications in industries such as pharmaceutical, textiles, plastics, polymers, oils, pesticides,dyestuffs, explosives, fluorescent-brightening industries (Kim & Lee, 2003; Um & Lee, 2005). Molecules are connected into centrosymmetric dimers via the eight- membered {OCOH}2 synthon (Table 1). The hydroxyl-H projects between the two sterically hindered aromatic rings and is therefore precluded from forming a hydrogen bonding interaction.
Experimental
2-Mercaptonicotinic acid (1.50 g, 1 mmol), 2,6-di-t-butylphenol (2.00 g, 1 mmol) and paraformaldehyde (0.291 g,1 mmol) were intimately ground into a powder and to this was added di-n-butylamine (0.09 ml). The slurry was heated to 373–383 K and after an hour, this solidified. The solid was purified by column chromatography, with chloroform as solvent, to give two products, one of which was the expected acid, (I), and the other, the di-n-butylammonium salt of the acid.
Refinement
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C). The acid H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H 0.84±0.01 Å; its temperature factor were freely refined. The hydroxy H-atom was placed in a chemically sensible position, with a distance of more than 2 Å from the neighboring methyl H-atoms. The C–O–H fragment is then perpendicular to the aromatic ring.
Figures
Fig. 1.
Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of the hydrogen-bonded dimeric structure of (I) drawn at the 70% probability level. Dashed lines denote the hydrogen bonds. Hydrogen atoms are drawn as spheres of arbitrary radius.
Crystal data
C21H27NO3SZ = 2
Mr = 373.50F000 = 400
Triclinic, P1Dx = 1.253 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.6305 (1) ÅCell parameters from 3920 reflections
b = 9.3489 (2) Åθ = 2.2–28.4º
c = 18.8749 (3) ŵ = 0.18 mm1
α = 85.505 (1)ºT = 100 (2) K
β = 89.453 (1)ºPrism, colorless
γ = 87.834 (1)º0.25 × 0.15 × 0.05 mm
V = 989.77 (3) Å3
Data collection
Bruker SMART APEX diffractometer4507 independent reflections
Radiation source: fine-focus sealed tube3746 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.1º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −7→7
Tmin = 0.956, Tmax = 0.991k = −9→12
12688 measured reflectionsl = −24→24
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127  w = 1/[σ2(Fo2) + (0.0642P)2 + 0.2102P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
4507 reflectionsΔρmax = 0.75 e Å3
239 parametersΔρmin = −0.71 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
S10.58009 (7)0.68988 (5)0.60316 (2)0.01722 (13)
O10.0857 (2)0.63037 (14)0.42620 (6)0.0211 (3)
H1O−0.014 (4)0.566 (2)0.4379 (14)0.053 (8)*
O20.2215 (2)0.56848 (14)0.53598 (6)0.0222 (3)
O30.8816 (2)0.54828 (13)0.92906 (6)0.0161 (3)
H3O0.78480.49340.95030.024*
N10.7549 (3)0.87163 (16)0.50351 (7)0.0177 (3)
C10.2358 (3)0.64038 (19)0.47879 (9)0.0184 (4)
C20.4212 (3)0.74553 (19)0.46400 (8)0.0176 (4)
C30.4393 (3)0.8192 (2)0.39715 (9)0.0203 (4)
H30.33160.80150.36070.024*
C40.6135 (3)0.9179 (2)0.38393 (9)0.0214 (4)
H40.62840.96890.33860.026*
C50.7661 (3)0.9404 (2)0.43878 (9)0.0203 (4)
H50.88561.00870.42990.024*
C60.5857 (3)0.77544 (19)0.51655 (8)0.0165 (3)
C70.8320 (3)0.7718 (2)0.64204 (8)0.0171 (3)
H7A0.98000.74890.61590.021*
H7B0.80700.87750.63970.021*
C80.8498 (3)0.71171 (19)0.71821 (8)0.0149 (3)
C90.9743 (3)0.58333 (19)0.73576 (8)0.0152 (3)
H91.05140.53500.69900.018*
C100.9903 (3)0.52279 (18)0.80543 (8)0.0131 (3)
C110.8749 (3)0.59945 (18)0.85839 (8)0.0126 (3)
C120.7483 (3)0.73030 (18)0.84288 (8)0.0126 (3)
C130.7379 (3)0.78302 (18)0.77173 (8)0.0148 (3)
H130.65140.87060.75950.018*
C141.1234 (3)0.37706 (18)0.82171 (8)0.0151 (3)
C151.3288 (3)0.38746 (19)0.87432 (9)0.0184 (4)
H15A1.40890.29300.88320.028*
H15B1.26530.41960.91920.028*
H15C1.44260.45640.85410.028*
C160.9495 (3)0.2627 (2)0.85004 (10)0.0213 (4)
H16A0.82230.25630.81550.032*
H16B0.88070.28960.89520.032*
H16C1.03470.16950.85750.032*
C171.2390 (3)0.3219 (2)0.75437 (9)0.0233 (4)
H17A1.11580.30970.71930.035*
H17B1.32240.22950.76650.035*
H17C1.35250.39140.73450.035*
C180.6287 (3)0.81640 (18)0.90074 (8)0.0141 (3)
C190.8187 (3)0.8637 (2)0.95129 (9)0.0188 (4)
H19A0.90640.77890.97270.028*
H19B0.74150.91590.98880.028*
H19C0.92910.92650.92450.028*
C200.4410 (3)0.72805 (19)0.94254 (8)0.0164 (3)
H20A0.32260.69790.90960.025*
H20B0.36250.78690.97730.025*
H20C0.51840.64310.96740.025*
C210.4985 (3)0.95322 (19)0.86854 (9)0.0197 (4)
H21A0.37530.92720.83610.029*
H21B0.61231.01450.84230.029*
H21C0.42501.00530.90670.029*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
S10.0224 (2)0.0166 (2)0.0123 (2)−0.00013 (16)−0.00189 (15)0.00089 (15)
O10.0269 (7)0.0187 (7)0.0178 (6)−0.0001 (5)−0.0059 (5)−0.0022 (5)
O20.0291 (7)0.0214 (7)0.0161 (6)−0.0030 (5)−0.0045 (5)−0.0001 (5)
O30.0184 (6)0.0173 (6)0.0118 (5)0.0002 (5)0.0019 (4)0.0032 (5)
N10.0214 (7)0.0164 (8)0.0147 (6)0.0038 (6)0.0009 (5)0.0005 (6)
C10.0240 (8)0.0151 (9)0.0164 (8)0.0056 (7)−0.0031 (6)−0.0053 (7)
C20.0233 (8)0.0145 (9)0.0149 (8)0.0050 (7)−0.0009 (6)−0.0034 (6)
C30.0278 (9)0.0192 (10)0.0135 (8)0.0066 (7)−0.0025 (6)−0.0030 (7)
C40.0301 (9)0.0202 (10)0.0131 (7)0.0047 (7)0.0015 (7)0.0012 (7)
C50.0236 (9)0.0190 (9)0.0176 (8)0.0021 (7)0.0029 (7)0.0012 (7)
C60.0217 (8)0.0140 (9)0.0134 (7)0.0051 (7)0.0010 (6)−0.0015 (6)
C70.0193 (8)0.0175 (9)0.0143 (7)0.0010 (7)−0.0013 (6)0.0004 (6)
C80.0156 (7)0.0154 (9)0.0135 (7)−0.0001 (6)−0.0003 (6)−0.0001 (6)
C90.0154 (7)0.0163 (9)0.0143 (7)0.0008 (6)0.0003 (6)−0.0035 (6)
C100.0129 (7)0.0115 (8)0.0153 (7)−0.0007 (6)−0.0012 (6)−0.0017 (6)
C110.0123 (7)0.0132 (8)0.0122 (7)−0.0018 (6)−0.0013 (5)0.0000 (6)
C120.0121 (7)0.0125 (8)0.0135 (7)−0.0013 (6)−0.0003 (5)−0.0020 (6)
C130.0152 (7)0.0126 (8)0.0162 (8)0.0014 (6)−0.0009 (6)0.0004 (6)
C140.0154 (7)0.0125 (8)0.0172 (8)0.0013 (6)−0.0008 (6)−0.0016 (6)
C150.0145 (8)0.0162 (9)0.0242 (9)0.0035 (7)−0.0031 (6)−0.0011 (7)
C160.0190 (8)0.0137 (9)0.0312 (9)−0.0008 (7)−0.0021 (7)0.0000 (7)
C170.0285 (9)0.0186 (10)0.0224 (9)0.0108 (8)−0.0003 (7)−0.0045 (7)
C180.0155 (7)0.0120 (8)0.0147 (7)0.0009 (6)0.0011 (6)−0.0014 (6)
C190.0186 (8)0.0194 (9)0.0191 (8)−0.0016 (7)0.0014 (6)−0.0061 (7)
C200.0141 (7)0.0173 (9)0.0180 (8)−0.0001 (6)0.0020 (6)−0.0027 (7)
C210.0238 (9)0.0144 (9)0.0202 (8)0.0068 (7)0.0032 (7)−0.0017 (7)
Geometric parameters (Å, °)
S1—C61.7634 (16)C12—C131.395 (2)
S1—C71.8239 (17)C12—C181.542 (2)
O1—C11.321 (2)C13—H130.9500
O1—H1O0.850 (10)C14—C171.538 (2)
O2—C11.230 (2)C14—C161.538 (2)
O3—C111.3817 (18)C14—C151.542 (2)
O3—H3O0.8400C15—H15A0.9800
N1—C51.337 (2)C15—H15B0.9800
N1—C61.342 (2)C15—H15C0.9800
C1—C21.471 (3)C16—H16A0.9800
C2—C31.394 (2)C16—H16B0.9800
C2—C61.415 (2)C16—H16C0.9800
C3—C41.380 (3)C17—H17A0.9800
C3—H30.9500C17—H17B0.9800
C4—C51.385 (2)C17—H17C0.9800
C4—H40.9500C18—C211.536 (2)
C5—H50.9500C18—C191.540 (2)
C7—C81.505 (2)C18—C201.539 (2)
C7—H7A0.9900C19—H19A0.9800
C7—H7B0.9900C19—H19B0.9800
C8—C91.386 (2)C19—H19C0.9800
C8—C131.387 (2)C20—H20A0.9800
C9—C101.393 (2)C20—H20B0.9800
C9—H90.9500C20—H20C0.9800
C10—C111.414 (2)C21—H21A0.9800
C10—C141.541 (2)C21—H21B0.9800
C11—C121.405 (2)C21—H21C0.9800
C6—S1—C7100.24 (8)C17—C14—C10111.47 (13)
C1—O1—H1O109.8 (18)C16—C14—C10110.37 (13)
C11—O3—H3O126.6C17—C14—C15105.58 (13)
C5—N1—C6118.43 (15)C16—C14—C15110.68 (14)
O2—C1—O1122.91 (17)C10—C14—C15111.98 (14)
O2—C1—C2122.32 (15)C14—C15—H15A109.5
O1—C1—C2114.77 (15)C14—C15—H15B109.5
C3—C2—C6117.92 (17)H15A—C15—H15B109.5
C3—C2—C1120.55 (15)C14—C15—H15C109.5
C6—C2—C1121.54 (15)H15A—C15—H15C109.5
C4—C3—C2120.04 (16)H15B—C15—H15C109.5
C4—C3—H3120.0C14—C16—H16A109.5
C2—C3—H3120.0C14—C16—H16B109.5
C3—C4—C5117.91 (16)H16A—C16—H16B109.5
C3—C4—H4121.0C14—C16—H16C109.5
C5—C4—H4121.0H16A—C16—H16C109.5
N1—C5—C4123.84 (17)H16B—C16—H16C109.5
N1—C5—H5118.1C14—C17—H17A109.5
C4—C5—H5118.1C14—C17—H17B109.5
N1—C6—C2121.87 (15)H17A—C17—H17B109.5
N1—C6—S1115.97 (12)C14—C17—H17C109.5
C2—C6—S1122.16 (14)H17A—C17—H17C109.5
C8—C7—S1107.24 (11)H17B—C17—H17C109.5
C8—C7—H7A110.3C21—C18—C19107.13 (14)
S1—C7—H7A110.3C21—C18—C20106.49 (13)
C8—C7—H7B110.3C19—C18—C20110.50 (13)
S1—C7—H7B110.3C21—C18—C12111.61 (13)
H7A—C7—H7B108.5C19—C18—C12109.74 (13)
C9—C8—C13119.07 (14)C20—C18—C12111.26 (14)
C9—C8—C7120.60 (15)C18—C19—H19A109.5
C13—C8—C7120.31 (15)C18—C19—H19B109.5
C8—C9—C10122.24 (15)H19A—C19—H19B109.5
C8—C9—H9118.9C18—C19—H19C109.5
C10—C9—H9118.9H19A—C19—H19C109.5
C9—C10—C11116.84 (15)H19B—C19—H19C109.5
C9—C10—C14120.15 (14)C18—C20—H20A109.5
C11—C10—C14122.99 (14)C18—C20—H20B109.5
O3—C11—C12116.25 (13)H20A—C20—H20B109.5
O3—C11—C10121.08 (14)C18—C20—H20C109.5
C12—C11—C10122.67 (14)H20A—C20—H20C109.5
C13—C12—C11117.06 (14)H20B—C20—H20C109.5
C13—C12—C18120.13 (14)C18—C21—H21A109.5
C11—C12—C18122.80 (14)C18—C21—H21B109.5
C8—C13—C12122.10 (15)H21A—C21—H21B109.5
C8—C13—H13118.9C18—C21—H21C109.5
C12—C13—H13118.9H21A—C21—H21C109.5
C17—C14—C16106.52 (15)H21B—C21—H21C109.5
O2—C1—C2—C3176.46 (16)C9—C10—C11—O3−179.75 (14)
O1—C1—C2—C3−4.1 (2)C14—C10—C11—O31.8 (2)
O2—C1—C2—C6−3.6 (3)C9—C10—C11—C120.3 (2)
O1—C1—C2—C6175.85 (15)C14—C10—C11—C12−178.16 (15)
C6—C2—C3—C4−0.1 (2)O3—C11—C12—C13−179.46 (13)
C1—C2—C3—C4179.83 (16)C10—C11—C12—C130.5 (2)
C2—C3—C4—C5−0.1 (3)O3—C11—C12—C181.9 (2)
C6—N1—C5—C4−0.3 (3)C10—C11—C12—C18−178.11 (14)
C3—C4—C5—N10.3 (3)C9—C8—C13—C120.6 (2)
C5—N1—C6—C20.0 (2)C7—C8—C13—C12179.43 (15)
C5—N1—C6—S1−179.54 (12)C11—C12—C13—C8−1.0 (2)
C3—C2—C6—N10.2 (3)C18—C12—C13—C8177.73 (15)
C1—C2—C6—N1−179.77 (15)C9—C10—C14—C173.8 (2)
C3—C2—C6—S1179.70 (12)C11—C10—C14—C17−177.85 (15)
C1—C2—C6—S1−0.2 (2)C9—C10—C14—C16−114.38 (17)
C7—S1—C6—N1−1.21 (15)C11—C10—C14—C1664.0 (2)
C7—S1—C6—C2179.23 (14)C9—C10—C14—C15121.83 (16)
C6—S1—C7—C8178.80 (11)C11—C10—C14—C15−59.8 (2)
S1—C7—C8—C985.94 (17)C13—C12—C18—C212.6 (2)
S1—C7—C8—C13−92.91 (16)C11—C12—C18—C21−178.80 (15)
C13—C8—C9—C100.3 (2)C13—C12—C18—C19−116.01 (16)
C7—C8—C9—C10−178.57 (15)C11—C12—C18—C1962.6 (2)
C8—C9—C10—C11−0.7 (2)C13—C12—C18—C20121.40 (16)
C8—C9—C10—C14177.77 (15)C11—C12—C18—C20−60.00 (19)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (1)1.79 (1)2.640 (2)179 (3)
Symmetry codes: (i) −x, −y+1, −z+1.
 
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2295).
References
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kim, T. H. & Lee, N. (2003). Bull. Kor. Chem. Soc., 24, 1809–1813.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
  • Um, S.-I. & Lee, J.-Y. (2005). Dyes Pigm.64, 93–99.
  • Westrip, S. P. (2008). publCIF In preparation.

See more articles cited in this paragraph