pmc logo image
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
Your browser version may not work well with NCBI's web applications. More information here...

Formats:

Acta Crystallogr Sect E Struct Rep Online. 2008 September 1; 64(Pt 9): m1187.
Published online 2008 August 20. doi: 10.1107/S1600536808023799.
PMCID: PMC2960726
Triclinic modification of di-n-butyl­bis(2-hydroxy­benzoato-κ 2 O 1,O 1′)tin(IV)
Reza Reisi,a Misni Misran,a Kong Mun Lo,a and Seik Weng Nga*
aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng/at/um.edu.my
Received July 22, 2008; Accepted July 28, 2008.
Abstract
The Sn atom in the title compound, [Sn(C4H9)2(C7H5O3)2], is chelated by the carboxyl­ate groups of 2-hydroxy­benzoate liagnds, and exists in a six-coordinate skew-trapezoidal bipyramidal coordination geometry [C—Sn—C = 140.1 (3)°].
Related literature
For the monoclinic modification, see: Narula et al. (1992 [triangle]). For a review of the structural chemistry of organotin carboxyl­ates, see: Tiekink (1991 [triangle], 1994 [triangle]). For a discussion of skew-trapezoidal bipyramidal diorganotin bis­(chelates), see: Ng et al. (1987 [triangle]).
Click on image to enlarge
An external file that holds a picture, illustration, etc.
Object name is e-64-m1187-scheme1.jpg Object name is e-64-m1187-scheme1.jpg
Crystal data
  • [Sn(C4H9)2(C7H5O3)2]
  • M r = 507.13
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1187-efi1.jpg
  • a = 9.1652 (2) Å
  • b = 11.2111 (2) Å
  • c = 12.2620 (2) Å
  • α = 94.759 (1)°
  • β = 106.872 (1)°
  • γ = 108.586 (1)°
  • V = 1121.24 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 100 (2) K
  • 0.25 × 0.20 × 0.15 mm
Data collection
  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.758, T max = 0.844
  • 11666 measured reflections
  • 5068 independent reflections
  • 4633 reflections with I > 2σ(I)
  • R int = 0.034
Refinement
  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.189
  • S = 1.18
  • 5068 reflections
  • 262 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 2.57 e Å−3
  • Δρmin = −1.40 e Å−3
Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).
Table 1
Table 1
Hydrogen-bond geometry (Å, °)
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023799/tk2286sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023799/tk2286Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
We thank the University of Malaya for funding this study (SF022/2007 A, FS339/2008 A) and also for the purchase of the diffractometer.
supplementary crystallographic information
Comment
Diorganotin dicarboxylates generally exist as monomeric molecules in which the carboxylate groups chelate in an anisobidentate manner (Tiekink, 1991; 1994). The R2Sn unit is bent, and the geometry at tin is described as being skew-trapezoidal bipyramidal (Ng et al., 1987). The title compound has been reported in a monoclinic form (Narula et al., 1992). This structure has one n-butyl group in a W conformation and the other in a U conformation. In the present triclinic modification (Scheme I, Fig. 1), both groups adopt a W conformation. Intramolecular O-H···O hydrogen bonds are noted (Table 1).
Experimental
Dibutyltin oxide (2 g, 8 mmol) and salicylic acid (2.2 g, 16 mmol) were heated in toluene (100 ml) in a Dean-Stark water apparatus. Slow evaporation of the filtered solution yielded colorless crystals.
Refinement
Carbon-bound H-atoms were placed in positions (C–H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C). The hydroxy H-atoms were similarly constrained (O–H 0.84 Å) but the hybridization of the oxygen atoms was assumed to be sp2.
The final difference Fourier map had a peak of 2.57 e Å-3 at 1.5 Å from the O5 and O6 atoms, and a deep hole of -1.40 e Å-3 at 1.5 Å from the H12 atom.
Figures
Fig. 1.
Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) plot of the triclinic form of [Sn(C4H9)2(C7H5O3] at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
Crystal data
[Sn(C4H9)2(C7H5O3)2]Z = 2
Mr = 507.13F000 = 516
Triclinic, P1Dx = 1.502 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.1652 (2) ÅCell parameters from 6302 reflections
b = 11.2111 (2) Åθ = 2.5–27.7º
c = 12.2620 (2) ŵ = 1.17 mm1
α = 94.759 (1)ºT = 100 (2) K
β = 106.872 (1)ºBlock, colorless
γ = 108.586 (1)º0.25 × 0.20 × 0.15 mm
V = 1121.24 (4) Å3
Data collection
Bruker SMART APEX diffractometer5068 independent reflections
Radiation source: fine-focus sealed tube4633 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 100(2) Kθmax = 27.5º
ω scansθmin = 1.8º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −11→7
Tmin = 0.758, Tmax = 0.844k = −14→14
11666 measured reflectionsl = −15→15
Refinement
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.189  w = 1/[σ2(Fo2) + (0.0604P)2 + 8.6498P] where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max = 0.001
5068 reflectionsΔρmax = 2.57 e Å3
262 parametersΔρmin = −1.40 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
xyzUiso*/Ueq
Sn10.50157 (6)0.34322 (5)0.64132 (4)0.03511 (17)
O10.6039 (7)0.5445 (5)0.6922 (5)0.0424 (11)
O20.4303 (7)0.4748 (5)0.7850 (5)0.0495 (13)
O30.4148 (9)0.6313 (7)0.9462 (6)0.0687 (19)
H3O0.38020.55490.91110.103*
O40.6470 (6)0.3786 (5)0.5355 (4)0.0391 (11)
O50.5384 (8)0.1687 (6)0.5037 (5)0.0535 (14)
O60.5995 (9)0.0298 (5)0.3515 (6)0.0634 (18)
H6O0.54750.02760.39800.095*
C10.2603 (9)0.2912 (8)0.5242 (7)0.0452 (17)
H1A0.25220.36520.48730.054*
H1B0.24120.22010.46200.054*
C20.1264 (10)0.2505 (8)0.5755 (8)0.0512 (19)
H2A0.13540.32530.62960.061*
H2B0.01980.22430.51230.061*
C30.1281 (12)0.1422 (9)0.6398 (9)0.059 (2)
H3A0.22430.17380.71180.071*
H3B0.14100.07380.59110.071*
C4−0.0260 (15)0.0841 (11)0.6719 (11)0.077 (3)
H4A−0.01590.01500.71400.116*
H4B−0.12170.04960.60090.116*
H4C−0.03890.15070.72120.116*
C50.6353 (10)0.2839 (7)0.7842 (7)0.0429 (16)
H5A0.60760.30660.85340.051*
H5B0.60340.18950.76690.051*
C60.8165 (10)0.3455 (7)0.8106 (7)0.0423 (16)
H6A0.84730.43990.82590.051*
H6B0.84360.32150.74150.051*
C70.9178 (12)0.3068 (9)0.9151 (8)0.059 (2)
H7A0.89170.33180.98450.070*
H7B0.88610.21240.90030.070*
C81.0967 (13)0.3666 (13)0.9401 (10)0.079 (3)
H8A1.15470.34111.00930.118*
H8B1.12880.46020.95380.118*
H8C1.12450.33810.87360.118*
C90.5369 (9)0.5664 (7)0.7668 (6)0.0391 (15)
C100.5867 (10)0.6976 (7)0.8301 (6)0.0391 (15)
C110.5246 (11)0.7235 (8)0.9170 (7)0.0466 (18)
C120.5768 (15)0.8474 (9)0.9784 (8)0.066 (3)
H120.53440.86481.03750.079*
C130.6896 (18)0.9447 (9)0.9535 (11)0.085 (4)
H130.72371.02980.99490.102*
C140.7559 (19)0.9206 (9)0.8676 (11)0.091 (5)
H140.83610.98840.85220.109*
C150.7029 (12)0.7971 (8)0.8060 (8)0.053 (2)
H150.74570.77990.74710.064*
C160.6292 (8)0.2670 (7)0.4830 (6)0.0350 (14)
C170.7181 (8)0.2616 (7)0.4013 (6)0.0344 (14)
C180.6975 (10)0.1431 (7)0.3404 (7)0.0420 (16)
C190.7814 (12)0.1408 (9)0.2613 (7)0.052 (2)
H190.76490.06150.21630.063*
C200.8863 (13)0.2521 (10)0.2488 (8)0.061 (2)
H200.94410.24890.19640.074*
C210.9105 (12)0.3695 (9)0.3108 (8)0.056 (2)
H210.98490.44630.30200.067*
C220.8242 (9)0.3729 (7)0.3858 (7)0.0419 (16)
H220.83800.45320.42760.050*
Atomic displacement parameters (Å2)
U11U22U33U12U13U23
Sn10.0326 (3)0.0370 (3)0.0356 (3)0.00980 (19)0.01499 (19)0.00458 (18)
O10.048 (3)0.040 (3)0.042 (3)0.015 (2)0.020 (2)0.006 (2)
O20.049 (3)0.045 (3)0.052 (3)0.010 (2)0.021 (3)0.006 (2)
O30.078 (5)0.059 (4)0.071 (4)0.009 (3)0.048 (4)0.003 (3)
O40.044 (3)0.038 (3)0.041 (3)0.014 (2)0.022 (2)0.006 (2)
O50.058 (4)0.046 (3)0.060 (4)0.010 (3)0.035 (3)0.010 (3)
O60.076 (4)0.036 (3)0.076 (4)0.006 (3)0.041 (4)−0.002 (3)
C10.041 (4)0.054 (4)0.039 (4)0.014 (3)0.013 (3)0.011 (3)
C20.040 (4)0.051 (5)0.065 (5)0.017 (4)0.020 (4)0.019 (4)
C30.055 (5)0.055 (5)0.077 (6)0.019 (4)0.034 (5)0.022 (5)
C40.080 (7)0.070 (7)0.098 (8)0.019 (6)0.062 (7)0.014 (6)
C50.050 (4)0.040 (4)0.039 (4)0.012 (3)0.019 (3)0.010 (3)
C60.048 (4)0.039 (4)0.041 (4)0.013 (3)0.017 (3)0.010 (3)
C70.063 (6)0.057 (5)0.054 (5)0.024 (4)0.011 (4)0.016 (4)
C80.056 (6)0.104 (9)0.074 (7)0.037 (6)0.008 (5)0.020 (6)
C90.042 (4)0.046 (4)0.034 (3)0.021 (3)0.014 (3)0.008 (3)
C100.049 (4)0.036 (3)0.032 (3)0.017 (3)0.011 (3)0.009 (3)
C110.057 (5)0.044 (4)0.044 (4)0.017 (4)0.024 (4)0.008 (3)
C120.099 (8)0.055 (5)0.054 (5)0.027 (5)0.043 (5)0.003 (4)
C130.136 (11)0.037 (5)0.086 (8)0.010 (6)0.068 (8)−0.001 (5)
C140.145 (12)0.038 (5)0.100 (9)0.007 (6)0.089 (9)0.002 (5)
C150.073 (6)0.044 (4)0.051 (5)0.017 (4)0.038 (4)0.009 (4)
C160.033 (3)0.040 (4)0.033 (3)0.013 (3)0.012 (3)0.007 (3)
C170.036 (3)0.041 (4)0.031 (3)0.017 (3)0.013 (3)0.008 (3)
C180.043 (4)0.039 (4)0.046 (4)0.013 (3)0.020 (3)0.008 (3)
C190.068 (6)0.055 (5)0.041 (4)0.026 (4)0.025 (4)0.003 (3)
C200.074 (6)0.082 (7)0.048 (5)0.039 (5)0.036 (5)0.018 (4)
C210.064 (6)0.059 (5)0.060 (5)0.023 (4)0.038 (5)0.028 (4)
C220.044 (4)0.043 (4)0.048 (4)0.020 (3)0.022 (3)0.016 (3)
Geometric parameters (Å, °)
Sn1—C12.118 (8)C6—H6A0.9900
Sn1—C52.117 (8)C6—H6B0.9900
Sn1—O12.106 (5)C7—C81.485 (15)
Sn1—O22.561 (6)C7—H7A0.9900
Sn1—O42.090 (5)C7—H7B0.9900
Sn1—O52.645 (6)C8—H8A0.9800
O1—C91.288 (9)C8—H8B0.9800
O2—C91.259 (9)C8—H8C0.9800
O3—C111.348 (10)C9—C101.467 (10)
O3—H3O0.8400C10—C111.396 (11)
O4—C161.296 (8)C10—C151.395 (11)
O5—C161.247 (9)C11—C121.386 (12)
O6—C181.346 (9)C12—C131.368 (15)
O6—H6O0.8400C12—H120.9500
C1—C21.501 (11)C13—C141.408 (15)
C1—H1A0.9900C13—H130.9500
C1—H1B0.9900C14—C151.382 (12)
C2—C31.503 (12)C14—H140.9500
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C16—C171.472 (9)
C3—C41.534 (13)C17—C221.383 (10)
C3—H3A0.9900C17—C181.397 (10)
C3—H3B0.9900C18—C191.405 (11)
C4—H4A0.9800C19—C201.362 (14)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.382 (14)
C5—C61.503 (11)C20—H200.9500
C5—H5A0.9900C21—C221.382 (11)
C5—H5B0.9900C21—H210.9500
C6—C71.533 (11)C22—H220.9500
O4—Sn1—O182.3 (2)H6A—C6—H6B107.7
O4—Sn1—C5104.7 (3)C8—C7—C6113.3 (8)
O1—Sn1—C5102.1 (3)C8—C7—H7A108.9
O4—Sn1—C1104.1 (3)C6—C7—H7A108.9
O1—Sn1—C1108.7 (3)C8—C7—H7B108.9
C1—Sn1—C5140.1 (3)C6—C7—H7B108.9
O4—Sn1—O2137.44 (19)H7A—C7—H7B107.7
O1—Sn1—O255.25 (19)C7—C8—H8A109.5
C5—Sn1—O288.1 (3)C7—C8—H8B109.5
C1—Sn1—O289.0 (3)H8A—C8—H8B109.5
O4—Sn1—O553.64 (18)C7—C8—H8C109.5
O1—Sn1—O5135.77 (19)H8A—C8—H8C109.5
C5—Sn1—O587.8 (3)H8B—C8—H8C109.5
C1—Sn1—O587.5 (3)O2—C9—O1119.5 (7)
O2—Sn1—O5168.92 (18)O2—C9—C10120.8 (7)
C9—O1—Sn1102.7 (5)O1—C9—C10119.6 (7)
C9—O2—Sn182.4 (4)C11—C10—C15119.7 (7)
C11—O3—H3O120.0C11—C10—C9121.1 (7)
C16—O4—Sn1106.0 (4)C15—C10—C9119.2 (7)
C16—O5—Sn181.3 (4)O3—C11—C12117.1 (8)
C18—O6—H6O120.0O3—C11—C10122.6 (7)
C2—C1—Sn1116.0 (5)C12—C11—C10120.3 (8)
C2—C1—H1A108.3C13—C12—C11119.7 (9)
Sn1—C1—H1A108.3C13—C12—H12120.1
C2—C1—H1B108.3C11—C12—H12120.1
Sn1—C1—H1B108.3C12—C13—C14121.0 (9)
H1A—C1—H1B107.4C12—C13—H13119.5
C3—C2—C1114.3 (7)C14—C13—H13119.5
C3—C2—H2A108.7C15—C14—C13119.2 (9)
C1—C2—H2A108.7C15—C14—H14120.4
C3—C2—H2B108.7C13—C14—H14120.4
C1—C2—H2B108.7C14—C15—C10120.2 (8)
H2A—C2—H2B107.6C14—C15—H15119.9
C2—C3—C4114.0 (9)C10—C15—H15119.9
C2—C3—H3A108.8O5—C16—O4119.1 (6)
C4—C3—H3A108.8O5—C16—C17122.5 (7)
C2—C3—H3B108.8O4—C16—C17118.4 (6)
C4—C3—H3B108.8C22—C17—C18119.7 (7)
H3A—C3—H3B107.7C22—C17—C16120.5 (6)
C3—C4—H4A109.5C18—C17—C16119.9 (6)
C3—C4—H4B109.5O6—C18—C19117.5 (7)
H4A—C4—H4B109.5O6—C18—C17123.8 (7)
C3—C4—H4C109.5C19—C18—C17118.7 (7)
H4A—C4—H4C109.5C20—C19—C18120.2 (8)
H4B—C4—H4C109.5C20—C19—H19119.9
C6—C5—Sn1111.8 (5)C18—C19—H19119.9
C6—C5—H5A109.2C19—C20—C21121.5 (8)
Sn1—C5—H5A109.2C19—C20—H20119.2
C6—C5—H5B109.2C21—C20—H20119.2
Sn1—C5—H5B109.2C22—C21—C20118.6 (8)
H5A—C5—H5B107.9C22—C21—H21120.7
C5—C6—C7113.4 (7)C20—C21—H21120.7
C5—C6—H6A108.9C17—C22—C21121.3 (8)
C7—C6—H6A108.9C17—C22—H22119.4
C5—C6—H6B108.9C21—C22—H22119.4
C7—C6—H6B108.9
O4—Sn1—O1—C9179.6 (5)Sn1—O1—C9—O2−4.1 (8)
C5—Sn1—O1—C9−76.9 (5)Sn1—O1—C9—C10175.5 (5)
C1—Sn1—O1—C977.3 (5)O2—C9—C10—C113.9 (11)
O2—Sn1—O1—C92.1 (4)O1—C9—C10—C11−175.7 (7)
O5—Sn1—O1—C9−176.4 (4)O2—C9—C10—C15−178.8 (8)
O4—Sn1—O2—C9−5.8 (6)O1—C9—C10—C151.7 (11)
O1—Sn1—O2—C9−2.1 (4)C15—C10—C11—O3−178.5 (9)
C5—Sn1—O2—C9104.0 (5)C9—C10—C11—O3−1.2 (13)
C1—Sn1—O2—C9−115.8 (5)C15—C10—C11—C120.7 (13)
O5—Sn1—O2—C9172.4 (9)C9—C10—C11—C12178.0 (8)
O1—Sn1—O4—C16176.7 (5)O3—C11—C12—C13179.2 (11)
C5—Sn1—O4—C1676.2 (5)C10—C11—C12—C130.0 (17)
C1—Sn1—O4—C16−75.8 (5)C11—C12—C13—C14−1(2)
O2—Sn1—O4—C16179.8 (4)C12—C13—C14—C151(2)
O5—Sn1—O4—C160.2 (4)C13—C14—C15—C10−1(2)
O4—Sn1—O5—C16−0.2 (4)C11—C10—C15—C14−0.2 (15)
O1—Sn1—O5—C16−5.1 (6)C9—C10—C15—C14−177.6 (10)
C5—Sn1—O5—C16−110.3 (5)Sn1—O5—C16—O40.3 (6)
C1—Sn1—O5—C16109.4 (5)Sn1—O5—C16—C17−179.9 (7)
O2—Sn1—O5—C16−178.7 (9)Sn1—O4—C16—O5−0.4 (8)
O4—Sn1—C1—C2175.7 (6)Sn1—O4—C16—C17179.8 (5)
O1—Sn1—C1—C2−97.9 (6)O5—C16—C17—C22−176.5 (7)
C5—Sn1—C1—C240.6 (9)O4—C16—C17—C223.2 (10)
O2—Sn1—C1—C2−45.3 (6)O5—C16—C17—C182.4 (11)
O5—Sn1—C1—C2124.2 (6)O4—C16—C17—C18−177.9 (7)
Sn1—C1—C2—C3−55.4 (10)C22—C17—C18—O6178.7 (8)
C1—C2—C3—C4−169.0 (9)C16—C17—C18—O6−0.2 (12)
O4—Sn1—C5—C630.8 (6)C22—C17—C18—C19−2.3 (11)
O1—Sn1—C5—C6−54.3 (6)C16—C17—C18—C19178.8 (7)
C1—Sn1—C5—C6165.7 (5)O6—C18—C19—C20−177.9 (9)
O2—Sn1—C5—C6−108.1 (5)C17—C18—C19—C203.0 (13)
O5—Sn1—C5—C682.2 (5)C18—C19—C20—C21−1.5 (15)
Sn1—C5—C6—C7178.9 (6)C19—C20—C21—C22−0.7 (15)
C5—C6—C7—C8179.3 (9)C18—C17—C22—C210.1 (12)
Sn1—O2—C9—O13.3 (6)C16—C17—C22—C21179.0 (7)
Sn1—O2—C9—C10−176.3 (7)C20—C21—C22—C171.4 (13)
Hydrogen-bond geometry (Å, °)
D—H···AD—HH···AD···AD—H···A
O3—H3o···O20.841.962.599 (9)132
O6—H6o···O50.842.002.626 (8)131
 
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2286).
References
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Narula, S. P., Bharadwaj, S. K., Sharda, Y., Day, R. O., Howe, L. & Holmes, R. R. (1992). Organometallics, 11, 2206–2211.
  • Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem.334, 295–305.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
  • Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  • Tiekink, E. R. T. (1994). Trends Organomet. Chem.1, 71–116.
  • Westrip, S. P. (2008). publCIF In preparation.

See more articles cited in this paragraph