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Rapidly rising trends of fuel consumption indicate enormous energy crisis of global proportions in near

future. Following the trend, Malaysia’s fuel consumption has been increasing by an annual rate of 7.2%

since 1990 and has even reached 44.9 Mtoe in 2008. It is forecasted to reach 207.3 Mtoe by the year

2030. Due to serious depletion of reserves in various onshore locations, the exploration process is

expanded to offshore deeper waters. Seven sedimentary basins belonging to Malaysia, in South China

Sea, show great promise to be excellent sources of hydrocarbons. For deep-sea exploration fixed

offshore structures are not feasible. An economical alternative is Spar platforms, which are floating

structures ideal for exploration of deep water deposits. In this research, Malaysian experience in

offshore hydrocarbon exploration is investigated. Various kinds of operational Spar platforms are

censoriously explored and their recent technical developments are reviewed. The study reveals that

Malaysia’s primary energy requirements were met (in year 2008) with natural gas by 43.4% of the total,

crude oil by 38.2%, coal by 15.3% and hydropower by 3.1%; indicating evidently that natural gas and

crude oil are still the predominant energy sources. Out of the total energy, around 70% oil and 85%

natural gas come from offshore fields. These large figures highlight the necessity to consider

economically viable alternatives. Spar platform is an innovative marine structure designed to conduct

such deep sea explorations. First commissioned Spar at Kikeh field of Malaysia is testimony to immense

potential and possibilities of incorporating Spar platforms in the country’s deep reserves for sustainable

energy generation. Classic Spar, Truss Spar, Cell Spar and Cell–truss Spar are identified to be well suited

for these environments. Since the offshore fields are located at waters with more than 1000 m depth,

Spar platforms can be successfully installed at these Malaysian deep water fields.

& 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

Over the past few decades, a drastic increase in the demand for
energy, specifically oil and natural gas, has become evident
worldwide. The global consumption of fuel reached 11,295
million tons of oil equivalent (Mtoe) in 2008 which is double
the amount of the meagre 6630 Mtoe in 1980 [1]. This rising
trend forecasts the global energy demand in the year 2030 to
increase by a shocking 53% equivalent to 17,282 Mtoe. Among the
primary sources of energy (Fig. 1) oil and natural gas account for
the major share, with around 34.8% and 24.1% respectively in the
year 2008 (Table 1).Although there has been a significant devel-
opment and advancement in the discovery and research of
alternative and renewable energy generation sources [2–7], it is
still very negligible in the face of dramatically increasing demand.
global primary energy consumption.

1980 (Total 6629.8 Mtoe) 2008 (Total 11294.9 Mtoe)
Share (%) Share (%)

44.9 34.8

27.3 29.2

19.6 24.1

2.4 5.5

5.8 6.4

. 1. Increment of global primary energy consumption.
Thus, the elaborate re-examination of the sources and methods of
production of oil and gas is of utmost importance in fulfilling the
projected energy consumption growth.

Quite predictably, this global trend of excessive energy con-
sumption growth is also reflective of the energy situation in
Malaysia. Malaysia’s total energy demand has been growing at a
significant rate, and is expected to rise even further to record
amounts in the future [8]. Fuel consumption alone has increased
by 7.2% per annum since 1990 and has touched 44.9 Mtoe in
2008, and is forecasted to be 207.3 Mtoe in the year 2030 [9].
However, the energy mix in Malaysia changed with a significant
reduction on the reliance for oil, although dependence on natural
gas still stands at more than half of the total [10]. Therefore, a
thorough study analyzing ways and means to increase the
production of oil and gas in the Malaysian region is the need of
the hour. It is worth mentioning that the energy status of number
of countries has been evaluated suggesting several sources
[11–17]. Efficient and effective policies for designing and optimiz-
ing the energy scenario and promising technologies for imple-
mentation have been proposed [18–21]. Existing research on the
energy reserves of Malaysia and the region are still in the infantile
stages, especially with respect to strategies on increasing oil and
gas production. Significant numbers of studies have suggested
and proven that ocean environments can be strategic and lucra-
tive sources of energy [22–28]. The nearby offshore area around
South China Sea [29–32] correspondingly supports this possibility
for Malaysia. Most of the developing and even developed coun-
tries have resorted to exploration of oil and gas reservoirs below
the seabed. This global initiative is due to two fundamental
factors. Firstly, the steep increase in the prices of oil and gas
and their by-products. Secondly, almost every country in the
world has realized that the importation of petroleum products is a
severe drain on their financial resources. A huge amount of fuel
energy can be collected from the sea environments [33–36].
Offshore sedimentary basins of Malaysia can be effective sources
of fuel compensation if oil and natural gas production can be
optimized from its deep waters.

Under deep water conditions, conventional fixed jacket type
off-shore platforms are highly uneconomical and prove to be
unsuitable. Research into alternative methods and approaches for
deep sea energy exploration has resulted in the development of a
series of flexible, compliant structures like the Tethered Buoy
Tower (TBT), the Articulated Leg Platform (ALP), the Tension Leg
Platform (TLP) etc. The Spar is the latest among this new
generation of compliant off-shore structures suitable for ocean
drilling, production and storage of oil in deep water [37,38].
Several state-of-the art works on Spar platform are available in
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the existing research literature [39,40]. The Spar platform has
been regarded as a competitive floating structure for deep and
ultra-deep water, oil and gas production [41–43]. Structurally it is
a rigid cylinder with six degrees of freedom (dof), anchored to the
sea-bottom by vertical or catenary cables. The original idea was to
design a simple structure with a natural frequency far below the
typical dominant ocean wave frequency-range in order to reduce
the resulting dynamic effects. This resulted in an appreciable
reduction of wave-induced forced vibrations in the range of
frequencies of waves. Therefore, Spar platforms deep water
conditions are found to be the most economical and efficient
type of off-shore oil drilling platforms.

Malaysia has recently installed its first Spar at the Kikeh field
located at 1330 m water depth off the shores of Sabah, in the year
2007. It is the first Spar ever mounted outside the Gulf of Mexico
[44,45]. Recently, an increasing interest in utilizing Spar technol-
ogy for deep and ultra-deep production platforms [46,47] has
been observed. The Spar can be installed [48,49] regardless of
water depth, number of wells and deck load as its heave natural
period is dependent only on the draft of the Spar.

Thus, the objective of this research is to carry out a thorough
literature survey and review of up to date research on the oil
and gas status in Malaysia, offshore reserves of oil and gas
energy, exploration of primary energy from Malaysian deep
waters and offshore compliant floating Spar platforms for oil
and gas exploration.
Fig. 2. Malaysian oil production and consumption.
2. Oil and gas exploration in Malaysian locations/sites

Malaysia has a huge potential to meet the growing energy
consumption demand on its own. From the commencement of the
last century it has successfully started to acquire and extract oil
and natural gas. Since the last 18 years the total primary energy
supply has been increased. It was around 64 Mtoe in 2008
reflecting more than a 200% upturn from the year 1990 [1]. This
amount is relatively high, in comparison with other developing
countries. However, the consumption scope of fuel energy has
been increasing considerably as a result of fast paced urbanization
and industrialization. As per the energy data for the Malaysian
region [50], Malaysia is a significant net exporter of oil and also
the leading exporter of liquefied natural gas (LNG) to the world,
ranking second in the world, behind Qatar.

Malaysia’s first ever oil well was discovered on Canada Hill in
Miri, Sarawak in the year 1910. After the Miri land field discovery,
there was no looking back as exploration and production activity
stepped up and covered the entire Sarawak land mass and was
subsequently followed by the exploration of Sabah and Tereng-
ganu waters. To date, oil and later the discoveries of gas fields
have propelled and fuelled the socio-economic development of
the country and its people for about 100 years, with contribution
to the Government totalling RM403.3bil between 1974 and 2008.

Malaysian energy remained highly reliant only on one prime
energy source – oil – before 1980. This trend was interrupted due
to two international oil crises and dramatic jumps in prices in
1973 and 1979 [51]. Therefore, the Four Fuel Diversification
Table 2
On-going oil refinery facilities of Malaysia.

Oil company

SHELL Refining Co. (FOM) Bhd

ESSO Malaysia Bhd

PETRONAS

PETRONAS

Malaysia Refining Company Sdn Bhd (PETRONAS/ConocoPhillips)
Policy was designed and implemented in the country to deal
with the crisis. However, natural gas has turned out to be the
leading contributor of total energy supply. Malaysia has also
adopted the Five-Fuel Diversification Strategy energy mix devised
in the year 1999. According to the embraced strategy, the energy
mix in this region is composed of five main sources viz. natural
gas, coal, oil, hydro and renewable energy. In the year 2008, the
supply of primary energy was contributed by natural gas, crude
oil, coal in the portion of 43.4%, 38.2%, 15.3% and 3.1% respec-
tively. It is evident for the aforementioned figures that crude oil
and natural gas are the dominant sources of primary energy
till date.
2.1. Oil

Malaysia possesses 5.46 billion barrels of oil reserves as of
January 2008 [52]. The primary reserves are located in the east of
Malaysia viz. offshore Sabah and Sarawak. They account for up to
68% [53] of total reserves. Numerous new projects for oil
production have come into operation in the past few years.
As of 2008, Malaysia’s oil production was reported to be
727,000 [54] barrels/day (bbl/d).

The existing five operational oil refinery facilities in Malaysia
produce a total amount of 59,200 barrels per day (Table 2). The
biggest refinery is capable of producing 155 thousand barrels per
day, and is located at Port Dickson, Negeri Sembilan. It is operated
by SHELL Refining Co. (FOM) Bhd. Petroleam Nasional Berhad
(PETRONAS), the state-owned national oil company of Malaysia
leads the upstream and downstream activities of the oil industry
of the nation. PETRONAS operates three refineries with an overall
capacity of 259,000 bbl/d. Apart from this, Shell and ExxonMobil
operate one plant each with 200,000 bbl/d and 88,000 bbl/d
capacity respectively. A lot of investment has been made in
refinery activities in Malaysia during the last 20 years. The
country is now capable of meeting the domestic demand for
petroleum products domestically subsequently ending a long
dependency on Singaporean refining industries.

To date, the oil production capacity of Malaysia is significantly
more than the consumption demand. This ensures that Malaysia
possesses a huge oil exporting capability. Fig. 2 illustrates the
consumption, production and net export pattern for Malaysian
Location Start-up date bbl/day

Port Dickson, Negeri Sembilan 1963 155,000

Port Dickson, Negeri Sembilan 1960 88,000

Kertih, Terengganu 1983 49,000

Melaka 1994 100,000

Melaka 1998 100,000



Fig. 3. Malaysian natural gas production and consumption.

Fig. 4. Sedimentary basins of Malaysia [118].
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oil. It is observed that oil consumption is increasing gradually at
steeper fashion than the production. The rising pattern of con-
sumption is reflected to be significant. However, the production
growth is observed to be average as depicted in the illustration.

Fig. 2 clearly demonstrates that the rate of rising production is
declining faster than the growth rate of consumption. Partly
driven by the ever increasing demands for energy worldwide
and new technological breakthroughs, the industry continues to
flourish as new fields are discovered and brought into production
faster and with improved oil recovery.

2.2. Natural gas

Malaysia’s energy status has seen natural gas, which has been
discovered in abundant amounts, as the leading energy source
from the early 2000s. From its initial discovery in 1983, its share
in the energy mix has grown remarkably, substituting oil as the
major source of energy. In January 2008, the country possessed 88
trillion cubic feet (tcf) equivalent as 2.49 trillion cubic metre
(tcm) of proven natural gas reserves [52]. Malaysian natural gas
reserves are the most prominent in the entire South East Asian
region, and even rank 12th largest in the world. Natural gas
exploration has grown progressively in recent years. It reached
198 million m/day in 2008 reflecting a 22% increase since 2002.
Furthermore, domestic consumption of natural gas has increased
noticeably as well to 941.6 billion cubic metres in 2008. Addi-
tionally, Malaysia is a substantial natural gas exporter, especially
of liquefied natural gas (LNG). The country exported 21.2 MMt of
LNG in 2005 which is 15% of total world LNG exports.

The largest amounts of natural gas are extracted from East
Malaysia, particularly offshore Sarawak. Malaysia has three LNG
processing plants. Each plant is located in a massive complex at
Bintulu (East Malaysia-Sarwak). They are supplied from the
natural gas fields off the shores of Sarawak. The Bintulu facility
is renowned to be the biggest LNG facility in the world, possessing
a total liquefaction capability of 22.7 MMt which is equivalent to
1.1 tcf (31 billion cubic metres) per annum. However, the con-
sumption of gas drastically increased from 2.5 million tons in
1990 to about 25 million tons in 2008, after the implementation
of the Malaysian fuel diversification strategy.

In Asia, Malaysia possesses one of the most extensive gas
pipeline networks. This is owing to the multi-phased Peninsular
Gas Utilization (PGU) project which was completed in 1998. The
goal of PGU is to expand the infrastructure for natural gas
transmission on Peninsular Malaysia. It spans more than 880
miles with 56.7 million cubic metres per day of natural gas
transporting capacity. The PGU successfully expanded regional
natural gas trade even beyond the domestic consumption.

Malaysia had already piped natural gas to Indonesia and
Singapore. In addition, in 2006, construction of the Trans-Thai-
land–Malaysia Gas Pipeline System was completed. This system
permits Malaysia to pipe natural gas to its domestic pipeline
system from the Malaysia–Thailand JDA. Furthermore, the
planned Trans-ASEAN Gas Pipeline (TAGP) system visualizes a
transnational pipeline network establishment connecting the
leading natural gas producers with consumers across South East
Asia. The extensive infrastructure and its strategic location
indicate that Malaysia is designated to serve as a regional hub
in the anticipated TAGP project [55].

According to the estimated reserves and production ratio,
natural gas will still contribute to the energy mix as the prime
energy source for succeeding decades. Till date, about 80% of
Malaysian energy mix is comprised of natural gas. PETRONAS is
also dominating the natural gas sector as the oil zone.

As illustrated in Fig. 3, Malaysia’s gas production has seen a
steady growth over the past 20 years, more so for LNG which has
become a major export commodity for the country, at 2.3 tcf
(64.82 billion cubic metre s) in 2007. The rising consumption of
natural gas in Malaysia is portrayed in the aforesaid relation.

The rising pattern of consumption is reflected as sharper than
the production. Apart from this, gas production has been observed
to be growing at a weighty rate as depicted in the display.
It means that the rate of growth in production of natural gas is
clearly more than the growth rate of consumption. Thus, it
necessitates increased efforts to raise natural gas production
domestically.
2.3. Offshore energy reserves in Malaysia

Almost all of Malaysia’s oil and gas are extracted from offshore
energy fields. The sedimentary basins have potential oil and gas
reservoirs as they contain many faults and natural traps, which
collect and accumulate hydrocarbons under their impermeable
layer. As shown in Fig. 4, the continental shelf offshore of
Malaysian waters is divided into seven sedimentary basins, out
of which three basins have major on-going oil and gas exploration
and production activity, namely Malay basin in West Malaysia off
Terengganu, Sarawak basin off the East Malaysian state Sarawak,
and Sabah basins off the East Malaysian state Sabah. The Malay
basin constitutes a major portion of the nation’s oil reserves. The
basin produces high quality fuel. The benchmark crude oil of
Malaysia, Tapis Blend, is very light with a sulphur content of
0.08% by weight and an API gravity of 441. Approximately 50%
of the aforementioned Malaysian oil production takes place in the
Tapis field.

Since the year 2002, there has been great focus on deep-water
fields on the eastern continental shelf. This has translated into
high functioning costs and the requirement of extensive technical
expertise. The newly adopted oil production project still in the
planning and construction phase includes the Gumusut/Kakap



Table 3
Malaysian deep-water fields in appraisal/operation.

Field name Recoverable Onstream date Operator

Kikeh 536 mmboe Q2/Q3 2007 Murphy Oil

Gumusut/Kakap 620 mmboe Q4 2010/ Q1 2011 Shell

Kebabangan 2.2 tscf Q3 2011 Conoco Phillips

Jangas 81 mmboe Q4 2011 Murphy Oil

Ubah Crest 215 mmboe Q2 2012 Shell

Pisangan 56 mmboe Q3 2012 Shell

Kamunsu 2.2 tscf Q2 2013 Shell
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project which is located in offshore Sabah, at 1200 m water depth.
As the oil and gas industry explores and investigates newer
locations and ways to recover hydrocarbons, exploration and
production activity has seen itself heading towards greater
frontiers. In other words, deeper and deeper wells are being
drilled and set up, this in turn results in greater challenges for
designing and setting up of offshore production facilities. Table 3
expresses the timeline of operation for deep-water projects in
Malaysia. It has been noted that Malaysia is already priming itself
to be a deep-water operations regional hub.
3. Off-shore energy exploration structures

Off-shore oil and gas exploration is technologically far more
complicated than on land. The design and the operation of off-
shore structures have evolved out of extensive theoretical ana-
lyses, model testing and practical experience in the scientific
disciplines that lead to the exploitation of oil and gas reserves
from hydrocarbon reservoirs below the seabed. There are several
different alternatives for fixing the platform deck with its equip-
ment to the seabed, in which the static vertical force, as well as
the dynamic forces and moments are transferred to the seabed.
The gravity foundation is used to transfer the loads directly onto
the uppermost layers of soil and the pile foundation is used to
transfer the loads to deep soil layers. A brief outline of various
types of off-shore platforms existing around the oceans [56–58] is
given in the subsequent section.

3.1. Fixed platform

Fixed platforms are designed as structures with natural peri-
ods well below the dominant wave periods. They have high
stiffness and tend to experience relatively small displacements.
They use conventional well systems which were developed along
with these platforms as the offshore industry matured, making
them very economical until a certain water depth. They require
minimum possible material and the environmental loads they are
exposed to minimum potential area. Examples are Jacket plat-
forms, gravity platforms, hybrid platforms and Jack-up platforms.

3.2. Bottom supported compliant platforms

These are compliant structures, which move with wind, wave
and current to a limited extent, rather than resisting their effects
as a fixed structure, and offer an economic solution to deep-water
applications. The bottom supported compliant platforms are
attached to the seabed by means of tension legs, guy lines,
flexible members or articulated joints. The buoyancy force or
the force of elasticity of the axially stressed legs generates the
restoring forces. As the system is not very stiff, the fundamental
natural frequency remains low. The design becomes technically
and economically feasible as it increases the natural periods of the
structure to an extent that the commonly occurring storm wave
period is much below the natural periods of the structure. The
relative fluid motion is reduced as the magnitude of wave forces
acting on the structure becomes smaller. Examples are Guyed
towers, Buoyant tower, Flexible tower, Compliant piled tower,
Articulated towers, Hybrid compliant platform, Tension leg plat-
forms and Tension buoyant tower.

3.3. Floating platforms

For much deeper water operations, the fixed and bottom
supported complaint platform is not suitable, and therefore
several innovative floating platform design concepts, such as drill
ships, semi-submersibles, Spar platforms, floating towers, floating
jacket, and deep draft caisson vessel have been proposed. These
platforms are economically efficient so as to be installed in deep-
water because of less structural weight compared to other types
of traditional platforms [59]. These types of structures resist loads
by undergoing large excursion, when subjected to environmental
loads thereby reducing the forces on the structures. They are
usually anchored to the seabed with wires, chains or cables in a
spread mooring pattern, so that the restoring forces arise from the
anchoring systems. The floating production platform is becoming
increasingly attractive because of some additional advantages.
It can be mobile and used repeatedly specially in case of
reservoirs with marginal reserves. The lag time from discovery
to first production can be reduced. It can be quickly disconnected
permitting passage for extreme conditions, large ice bergs and in
addition its design may not be significantly affected by earth-
quakes and water depth.
4. Spar platform for oil and gas exploration

The viability and feasibility of Spar as a stable floating ocean
platform has been recognized for years. The FLIP ship was built in
1962 as a stable platform for oceanographic measurements. The
potential use of the Spar in the off-shore industry was recognized
in the 1970s with the construction of the Royal Dutch Shell’s
Brent Spar for oil storage and offloading in the North Sea.
Research on the vessel was carried out by some oil companies
in the mid-1970s, however, further use of the Spar concept did
not materialize. It has been proposed as a low cost production
facility for remote sub-sea well sites [60]. A number of opera-
tional Spar platforms such as Shell’s ESSCO Brent Spar, Oryx
Neptune Spar, Chevron Genesis Spar, Exxon’s Diana Spar etc. in
the Gulf of Mexico and the North Sea prove the effectiveness,
economy, and success of such platforms in deep water conditions.
Some introductions of different types of Spar platforms are
provided in the succeeding section.

4.1. Globally installed Spar platforms

The details of some of the different types of Spar platforms
installed at various places of the world are given below. Fig. 5
illustrates different types of Spar positioned in numerous
sea water depths. The water depths, production facilities and
structural configurations of the existing Spar are presented in
Table 4.

4.1.1. Neptune Spar

The Neptune Spar installed at the Gulf of Mexico has a large
cylindrical hull that is moored in a vertical direction and is
capable of producing 14,000 bbl of oil and 23 Mmcf/d or
0.7 Mmcm/d of gas. It is the world’s first classic Spar installed in
Gulf of Mexico. Its cylinder is separated by three major compo-
nents: upper section, centre well and keel section. A square centre



Fig. 5. Installed Spar platforms at different water depths [56,119]. (a) Neptune, Genesis, Diana and Boomvang Spar, (b) Genesis hull in ‘up righted’ position, (c) Nansen,

Horn Mountain, Gunnison, Holstien and Mad Dog Spar and (d) Red hawk and Constitution Spar.

Table 4
Installed Spar platforms globally.

Type of Spar Water depth (m) Location Capacity Hull (m) D¼Diameter

L¼Length
bbl/d of oil MMcf/d of gas

(MMcm/d)

Neptune 600 Viosca Knoll Block 826; Gulf of Mexico 14,000 23 (0.65) L¼215, D¼ 22

Genesis 790 Green Canyon blocks 160, 161 and 205; Gulf of Mexico 55,000 72 (2.04) L¼215, D¼37.20

Exxon’s Diana 1448 East Breaks Block 945, 946 and 989; Gulf of Mexico 110,000 325 (9.21) L¼215, D¼37.2

Nanseen truss 1130 East Breaks block 601, 602,646; Gulf of Mexico 40,000 200 (5.67) L¼165.5, D¼27.4

Boomvang truss 1052 East Breaks block 643; Gulf of Mexico 40,000 200 (5.67) L¼165.5, D¼27.4

Horn Mountain 1646 Mississippi Canyon Block 126,127; Gulf of Mexico 65,000 68 (1.93) L¼178.4, D¼32.3

Gunnison 952 Garden Banks Block 668; Gulf of Mexico 40,000 200 (5.67) L¼165.5, D¼27.4

Holstein 1325 Green Canyon Block 645; Gulf of Mexico 110,000 150 (4.25) L¼227, D¼46

Mad Dog 1372 Green Canyon Block 782; Gulf of Mexico 100,000 60 (1.7) L¼169.2, D¼39

Red Hawk 1616 Garden Banks Block 877; Gulf of Mexico – 300 (8.5) L¼146.4, D¼19.5

Constitution 1555 Green Canyon Block 680; Gulf of Mexico 70,000 200 (5.67) L¼167.7, D¼29.9
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well 9.75 m�9.75 m goes through the long buoyant section. In
addition, the long tank accommodates 16 well slots at the keel
and buoyant section is 90 m in length. The hull supports an
integrated assembly of two production decks with a clear work-
over deck on top. Station keeping of Spar is done by active six
point mooring. Every leg consists of a driven pile, a short length of
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chain, 732 m of spiral strand wire rope and 320 m of chain
connecting through the fairlead.

4.1.2. Genesis Spar

The Chevron’s Genesis Spar is the world’s first drilling/produc-
tion Spar located at the Genesis field 150 miles south of New
Orleans. The Genesis is the second classic Spar ever assembled in
the world. The Spar has four main components: hull, mooring
system, risers and topside deck. It is larger than the Neptune Spar
and has a full sized drilling rig of 7622 m depth capability. The
field is capable of producing 55,000 barrels of oil along with 2.04
million cubic metre of gas per day. Formally named the Genesis
Canyon or Vancouver project, the Genesis field lies in the Viosca
Knoll Carbonate Trend. Its freeboard and draft are similar to the
Neptune Spar and the buoyant section is 90 m in length.

4.1.3. Exxon’s Diana Spar

Exxon’s Diana Spar is located at the Gulf of Mexico nearly 150
miles south of Galveston, Texas for full drilling and production.
It houses fewer wells than the Chevron Genesis Spar but added
production facilities with a centre well of 14.65 m square. It has a
buoyant section which is 106.70 m in length and an analogous
freeboard and draft like Genesis. However, eight legs hold its deck
section and it is positioned by 12 moorings. It has well slots
comprising of eight productions and one drilling. It has produc-
tion capabilities of 110 Mbopd and 325 Mmscfpd of gas.

4.1.4. Nansen truss Spar

The Nansen truss Spar platform located in the Gulf of Mexico
at 3680 m water depth is the first Spar of its different kind in
which the bottom portion of the cylindrical hull is replaced by a
tubular truss. It has a production facility for 40,000 bbl of oil and
5.67 MMcm of natural gas per day. It has topside payload of
8750 t and 12,000 t heavy hull connected by nine mooring lines.
This Truss Platform was introduced in 2001 when the Nansen was
mounted in the Gulf of Mexico. It has three foremost components:
(a) hard tank provides most of the in-place buoyancy for the Spar,
(2) truss section supports the heave plates and provides separa-
tion between the keel tank and hard tank, and (3) keel tank (‘‘Soft
Tank’’) comprises the fixed ballast and works as a natural hang-off
location for export pipelines as well as flow lines.

4.1.5. Boomvang truss Spar

The Boomvang truss Spar platform is the same as Nansen truss
Spar and is the second truss Spar located at East Breaks block 643
in the Gulf of Mexico. The structural specification and capacity of
Boomvang truss Spar is the same as Nansen truss Spar.

4.1.6. Horn Mountain

Horn Mountain is located at Mississippi Canyon Block 126 and
127 in the Gulf of Mexico. Its Spar hull and submerged portion
was imported from Finland along with the topsides with produc-
tion facility. It is treated as the deepest free-floating dry tree
system in the world. Production ramped up to more than
65,000 b/d and 1.93 MMcm/d with seven production wells com-
ing on-stream in 2003. The field is anticipated to eventually
recover 150 MMboe.

4.1.7. Gunnison Spar

Gunnison Spar was installed at Garden Banks Block 668 in the
Gulf of Mexico. The oil well was penetrated to a depth of 5183 m
with Noble Drilling’s Noble Amos Runner semi-submersible.
Gunnison field incorporating a truss Spar akin to Nansen and
Boomvang started producing in December 2003. It acts like a hub
with numerous fields including Durango in addition to Dawson
spread across a large area. Estimated production is similar to
Nansen and Boomvang. However, nine wells were linked with
the Spar.

4.1.8. Holstein Spar

Holstein Spar incorporated in Green Canyon Block 645 in the
Gulf of Mexico is one of the biggest truss Spar hull–mooring
system in the whole world. It included the first-ever installation
of a Spar-supported riser tension system. The Spar produces
110,000 b/d oil and 4.25 MMcm/g of gas. Holstein Spar is moored
by chain, wire, and suction pile anchors. It supports topsides of
full operating weights of 26,445 ST approximately. Its drilling rig
has a capacity of penetrating for 7622 m. The Spar contains two
steel catenary risers. It includes a 15,500 t hard tank 89 m in
length.

4.1.9. Mad Dog Spar

Mad Dog Spar was installed in Green Canyon Block 782 in the
Gulf of Mexico. It can produce up to 100,000 b/d oil and
1.7 MMcm/d of gas. It contains a truss Spar having simultaneous
facilities of production and drilling operations and also includes
an assimilated drilling rig, dry trees, along with 16 well slots. The
Spar can cope with weights of around 18,000 t, which comprise of
a drilling rig as well as 126 persons’ quarters. The Spar is held
with chain–polyester–chain system and moored down by 11 taut
mooring.

4.1.10. Red Hawk Spar

The Cell SPAR Platform, Red Hawk was made operational in
2004. The Red Hawk Spar installed in the Garden Banks Block 877
in the Gulf of Mexico is located at 1616 m water depth. Kerr-
McGee developed the field incorporating the world’s first cell Spar
installed in GOM with permanent use of synthetic moorings. It
was designed for a capacity of 8.50 MMcm/d of natural gas and
planned as a host structure of feasible development of neighbour-
ing satellite fields. This innovative Spar considered the third
generation of Spar technology, lessens the reserve threshold for
cost-effective expansion in deep waters. The Red Hawk cell Spar
includes seven 6 m diameter cylindrical tubes with a centre tube
surrounded by them, and linked with structural steel. Each of
these tubes encloses variable-ballast tanks and redundant, inde-
pendent cells. The middle hull section is an extension of three
tubes and serves as a rigid link between the hard tank and the
keel tank. The lower section named keel surrounds the permanent
ballast. Synthetic mooring containing high strength polyester
fibre reduces vertical loads on Spar hull in deep water. The
separate tubes are attached by heave plates. The heave plates
contribute added stability to the structure by reducing the force
prone to ocean waves and current.

4.1.11. Constitution Spar

The Constitution Spar was installed in the Gulf of Mexico on
Green Canyon Block 680. This field was discovered by Kerr-McGee
to produce both oil and gas energy. It had been drilled by the
semi-submersible Noble Amos Runner. The field incorporates a
truss Spar and acts as a regional hub among the area tiebacks. It is
capable of producing 70,000 b/d oil and 5.67 MMcm/d gas.

4.1.12. Perdido Spar

Perdido Spar is the most recent Truss Spar installed by Shell.
The Spar broke the deep-water record and came in operation in
2010. It is characterized by the tubular members which offer
linking between the hard tank and the keel. In addition, the truss
system supports to the heave plates which evidently improve
stability by lessening heave.
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4.2. Structural configurations of Spar platform

The Spar platforms installed in deep water consist of a number
of combinations. It is worth mentioning that several types of
combinations are being implemented depending on the charac-
teristics and requirements of the different offshore fields. There
are four basic approaches of designs for SPAR platforms, namely
(1) Classic Spar, (2) Truss Spar, (3) Cell Spar and (4) Cell–Truss
Spar. The different Spar designs reflect industry innovations. Each
design is an improvement on an older model and offers improved
functionality at a reduced cost.
Fig. 6. Spar and 6-degrees of freedom.

Fig. 7. Sketch of Spar Platform assembly.
4.2.1. Classic Spar

The classic Spar is a Spar platform with a full hull cylinder. It is
one of the most versatile types in use. Its cylindrical hull floats
vertically in water. The wave action on the surface dampens
through the counter balance influence of the net buoyancy of the
structure as it floats in much deeper water. The strakes are
attached helically around the periphery of the cylinder. This fin
like structural element breaks the water flow beside the structure
and increases the structural stability. The hull of the classic (full
cylinder) Spar consists of three main sections, namely, the upper
buoyant, hard tank section, the flooded mid-section which can be
configured for oil storage on top of a water cushion and the
flooded soft tank section at the keel. Combined with the caisson’s
deep draught, the entrapped mass of the water in the flooded
sections provides a floating structure with very favourable
response motions to environmental loadings. For example, typical
response periods for Gulf of Mexico Spar are around 350 s in
surge, 60 s in pitch and 28 s in heave.

Station keeping is maintained with a multi-component lateral
catenary system linked with hull close to its centre of pitch aimed
at low dynamic loading. This catenary system consists of 6–20
lines, composed of both chain and wire. As the Spar experiences
low motions, it can also incorporate a taut mooring system
because of its lower cost, than a full catenary system. The rigid
steel production risers are located within the moon pool where
the protected water allows each riser to be supported in tension
by its own buoyancy module. Although Spar’s lateral motions in
extreme storms are quite limited, usually 4%–8% of the water
depth, the riser does experience noticeable bending at the keel of
the vessel and at the seafloor wellhead [56]. Reinforced areas of
the production risers where they exit the keel of the hull and
where they tie in to the seafloor wellhead accommodate these
stresses. The vertical production risers are top tensioned by an
assembly of buoyant cylinders through which the well casing
strings are tied back ensuring the well is accomplished. In
addition, two other categories of risers are used for drilling and
export/import function. The export/import risers may be flexible
pipe, top tensioned steel pipe or steel catenaries.

The sea floor end of every mooring is anchored by means of a
driven pile or suction pile while the hull end runs through a
fairlead located well under the water surface and extending up
the outside of the hull to chain jacks at the top. Excess chain is
stored in the hull. The topside configuration follows typical design
practices of fixed platforms. The decks can put up a full drilling rig
(3000 hp) or a work-over rig (600–1000 hp) and full production
equipment. Because of having low stiffness, the natural frequency
is low and the structure moves in the entire six dof viz. surge,
sway, heave, roll, pitch and yaw motion (Fig. 6). Due to large
displacements, it is imperative to consider the geometric non-
linearity [61–63]. Spar platforms are configured for multiple
purposes including production only, or any combination of
production, work-over and drilling. The wells can be either
directly under the hull and produced through dry trees or can
be located remote from the vessel and produced through sub-sea
trees and flow-lines back to the Spar. Fig. 7 illustrates a typical
sketch of the classic Spar platform installed in a deep water region
for oil and gas exploration.

4.2.1.1. Analysis technique of classic Spar. The configuration of the
floating Spar platform system is habitually the first challenge with
its actual behaviour. Evidencing the stable formation is of utmost
importance and has to be confirmed in advance of accomplishing
the dynamic analyses. The coupled action of the mooring line/
cable/chain with the platform is of complex nature to be attained
gradually in actual fashion. It is natural that due to the ideal
modelling, the complex solution including nonlinearities
experiences difficulty in convergence. Despite the complexities
arisen, forces and moments are to be well matched. Succeeding
sections describe the approaches dealt with the existing
researches on such floating platform assembly.

4.2.1.2. Spar–mooring system. Spar–mooring system is designated
by a slackly moored floating structure which usually has very low
natural frequency in displacement motion. Due to nonlinear low-
frequency wave forces, the structure will experience large low-
frequency motions. Mooring line damping is from drag forces on
mooring lines and the friction between mooring lines and the
seabed. Many studies have shown that mooring induced damping
could substantially reduce the slow-drift displacement motions of
a moored semi-submersible or ship [64–67]. Ran et al. [68]
evaluated the response behaviours of a large slack-moored Spar
platform subjected to regular and irregular waves. It was
concluded that the effects of mooring inertia and damping was



Table 5
Mechanical and geometrical properties of Spar–mooring system.

Element properties

Spar (Classic JIP Spar) Length 213.044 m

Diameter 40.54 m

Draft 198.12 m

Mass 2.515276E8 kg

Mooring Point 106.62 m

Mooring No. of Moorings 4

Stiffness (EA) 1.501E9 N

Length 2000.0 m

Mass 1100 Kg/m
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important to be considered for better prediction of static plus
dynamic behaviour of a moored platform. Jha et al. [69] studied the
floating Spar buoy platform motions with the wave tank
experiments results. Mooring lines were modelled as a set of
mass-less linear springs. Wave input and damping were
considered in a consistent manner. These successive model
refinements are generally found to improve the agreement with
the model test results.

Due to different shapes of hulls and different types of mooring
systems, motion responses of various structures are quite differ-
ent. The displacements of a Spar or semi-submersible moored by
a spread–mooring system are usually dominated by slow-drift
motions, especially in horizontal plan (surge, sway and yaw).
While experiencing slow-drift motions in the horizontal plan, a
tendon moored platform has high frequency motions in the
vertical plan (heave, roll and pitch). Ran and Kim [70] assessed
the non-linear response of a tethered/moored Spar platform in
the environment of regular as well as irregular waves. A number
of experiments with a 1:55 scale model were conducted in the
OTRC’s deep-water model basin with and without currents and
wind. The Spar models used were comparatively smaller than the
large one studied by Ran et al. [68]. The small Spar had been
supported by a vertical tether and six spread mooring lines.
Coupled dynamic analysis results obtained by a developed pro-
gramme were compared with the uncoupled analysis results.

Chen et al. [71] presented the response of a slack moored Spar
platform, to show the coupling phenomenon between Spar and
mooring system. The responses were obtained by using a com-
puter code COUPLE and it was compared to corresponding
laboratory measurements. COUPLE could be a proper tool for
numerical simulation to compensate laboratory experiments,
especially for deep waters. The design of a mooring system in
unprecedented water depth presents a challenge to the model
tests in wave basins. Water depths around 1000 m can be
modelled in the largest test basins in the world by a typical scale
ranging from 1:50 to 1:100 in the past [72,73]. Truncated mooring
line model tests showed that line dynamic tensions of a truncated
mooring system are very different from those of a full-depth
(undistorted) mooring system [74]. Ormberg et al. [75] have
proposed a hybrid method to extrapolate a truncated mooring
model test on the corresponding full-depth mooring line system
with the aid of numerical simulations based on a coupled
dynamic analysis. Hence, a coupled dynamic analysis is a very
useful tool in dealing with a truncated mooring system.

Ran et al. [76] carried out non-linear coupled analysis of a
moored Spar platform in random waves. It was assumed that the
Spar platform was positioned by four groups of taut catenary
mooring lines with three lines in each group. In the analysis, each
group of lines was modelled by a single taut catenary mooring
line with equivalent material and hydrodynamic properties. The
mooring lines were linked with the platform by means of linear as
well as rotational springs along with dampers. It was implied that
the viscous damping was likely to be overestimated by stochastic
linearization. In the presence of collinear currents, the motions of
low frequency surge and pitch were appreciably reduced due to
the increase in viscous damping. Ma and Patel [77] examined the
hydrodynamic dealings of Spar platform under ocean waves and
the quantification of those non-linear wave components. Parti-
cular attention was given to three force components namely
centrifugal force, point force at the Spar bottom end and axial
divergence force. The results demonstrated that the centrifugal as
well as axial divergence force components could be significant,
matched with those of the non-linear forces under wave accel-
eration. The magnitudes of the two force components were
strongly reliant on wave conditions, and could be minor in such
environments but could not be neglected.
A coupled dynamic analysis is usually much more accurate
than a quasi-static approach in predicting hull motions and
mooring line tensions. However, it is also computationally inten-
sive, which hinders its application as a common design tool. Chen
et al. [78] carried out the response of Spar platform constrained
by slack mooring lines. This study focuses on the cable dynamic
analysis and couple dynamic analysis. A coupled dynamic analysis
programme called COUPLE applicable to Spars and TLPs, has been
developed. COUPLE has two options for computing wave potential
forces. Table 5 shows the data used for the study. The reduction of
slow drift surge motion due to mooring line damping reached
about 10% at 1018 m water depth. Mooring tension at wave
frequency range anticipated by the coupled dynamic method
was eight times more than that at quasi static approach for the
same water depth. Such findings were proved to have essential
consequences in estimating fatigue strength plus life span of
mooring line in deep sea.

Agarwal and Jain [79] carried out a coupled dynamic analysis
of Spar platform. The hull was modelled as a six dof based rigid
body linked with sea bed by multi-component catenary mooring
lines attached with the hull at fairlead position. Numerical studies
were performed for numerous regular waves aiming at a detailed
parametric study. The coupling of the stiffness matrix played an
essential part in the Spar platforms dynamic behaviour. Umar and
Datta [80] performed non-linear dynamic investigation of a
multipoint slack moored buoy subjected to first and second order
wave forces. The hollow cylindrical buoy was attached to the sea
floor with six numbers of slack mooring lines. The regular waves
were composed of three categories viz, 5 m/5 s, 12 m/10 s and
18 m/15 s. Different types of instability like nT sub harmonic
oscillations, symmetry breaking bifurcation and aperiodic
responses might occur in slack mooring systems. Dynamic con-
duct of Spar–mooring line structure in time domain and fre-
quency domain was carried out by [81,82]. Fig. 6 idealizes the
response directions defined in their study.

Mazaheri and Downie [83] proposed a method based on
Artificial Neural Networks (ANN) for the prediction of platform
response and mooring forces of floating off-shore structures
subjected to multi-varied environments. The designed ANN
model had performed the response predictions for determining
excursions of a number of platforms subjected to long-term met-
ocean data. Chernetsov and Karlins [84] proposed floating sub-
structures for Stockman gas field in North West Russia. The three
proposed sub-structures were Spar-Classic, Spar-Ring and TLP-
Ring. Under ice pressure the Spar and semi-submersible sub-
structures were found to be unsuitable due to their intolerable
flexibility. A sub-structure equipped with a ‘‘Ring’’ as a supple-
ment to the vertical column was selected for the study to over-
come the problem due to ice pressure. The limitations for the
installation required a long period of calm weather conditions for
marine operations. Therefore, the SPAR-Ring was the most
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adaptable floating structure for construction in the North West
Russian region.

Jameel [56] and Jameel et al. [37] investigated the fully
coupled integrated Spar–mooring line system. The large Spar
cylinder was physically linked with mooring lines at fairleads
provided by six nonlinear springs. Islam et al. [38] followed a
similar technique of spar–mooring system. The mooring lines as
an integral part of the system support the Spar at fairlead and are
pinned at the far end on the seabed. They are partly hanging and
partly lying on the sea bed. The sea bed was modelled as a large
flat surface with a provision to simulate mooring contact beha-
viour. The forces on mooring lines due to in sea state were drag,
inertia and damping forces. These forces are active concurrently
on Spar hull cylinder. The commercial finite element code
ABAQUS/ AQUA was used to model the configuration. Modelled
Spar–mooring system has been analyzed in effect of proper
environmental loading at regular wave. The study also uses data
mentioned at Table 5. The model was found to be most ideal.
Table 6 specifies the typical statistical analysis results from this
research. A brief and standalone sketch of recent advancement on
Table 6
Typical dynamic responses in statistical itemization.

Hs¼6 m, Tz¼14 s Max

Displacement motion Surge direction (m) 16.194

Heave direction (m) 2.374

Rotational motion Pitch direction (rad.) 0.121

Tension Mooring line 1 (N) 1.681E7

Mooring line 3 (N) 1.679E7

Table 7
Advancement on Spar–mooring system.

Structural configuration Researchers Application

Slack-moored Spar Ran et al. [68] Various wavesþcurren

Spar–mooring system. Mooring line as mass-

less linear springs

Jha et al. [69] Random sea, extreme

in both the Gulf of Me

the North Sea

Tethered/moored Spar. Small Spar supported

by a vertical tether and six spread mooring

lines

Ran and Kim

[70]

Regularþ irregular wav

Slack-moored Spar platform. Spar coupled

with mooring line (taut mooringþsprings)

Ran and Kim

[70]

Steep ocean waves usi

nonlinear Hybrid Wav

Moored Spar platform. Spar positioned with

4 groups of taut catenary mooring lines

Ran et al. [76] Random waves

Spar platform. Mooring lines replaced by

springs

Ma and Patel

[77]

Ocean waves

Spar platform constrained by slack mooring

lines (modelled as massless nonlinear

springs)

Chen et al.

[78]

Nonlinear waves

Rigid Spar positioned with six multi-

component catenary mooring lines

Agarwal and

Jain [79,120]

Several regular waves

Multipoint slack moored buoy A hollow

cylindrical buoy anchored to the sea bed

by six slack mooring lines

Umar and

Datta [80]

First and second order

forces

Spar mooring system Sarkar and

Rosset [121]

Wave Model Basin of O

two bichromatic wave

Floating platform with mooring lines Mazaheri and

Downie [83]

Multi-varied environm

conditions

Floating substructures Spar-classic, Spar-ring

and TLP-ring

Chernetsov

and Karlinsky

[84]

Long period of calm w

condition

Spar–mooring system Large Spar cylinder

linked with mooring at fairleads by six

nonlinear springs

Jameel et al.

[37], Islam

et al. [38]

Regular wave

Spar–mooring system Large Spar cylinder

linked with mooring at fairleads by six

nonlinear springs

Jameel [56] Regular wave, irregula

long crested random s
energy exploration structure Spar–mooring line system in differ-
ent deep water environment has been shown in Table 7.

4.2.1.3. Spar–mooring–riser system. In the case of a Spar platform
being installed in deep water, the riser and mooring lines
contribute significant inertia and damping. Design of the
mooring system and risers connected to Spar platform are
dominated by the motion of the Spar platform. An over-
prediction of motion would require costly risers and mooring
lines, while an under-prediction can lead to inadequate design
and possibly catastrophic failure. Accurate prediction of motions
of Spar platform is very important for the integrity and associated
costs of the risers and mooring lines. A detailed survey has been
carried out to study the different methodologies adopted by
various investigators regarding analysis of the Spar platform.

The boundary conditions at the interfaces between mooring/
tendon/riser systems and the structure should be properly mod-
elled in dynamic analysis. A spring–damper system is usually
used for this purpose [70,85]. Interfaces between Top Tension
Risers (TTRs) and the hull need special considerations. Ormberg
Min Mean Standard deviation

�13.658 1.038 8.663

�1.981 0.352 1.149

�0.122 0.0001 0.074

1.583E7 1.632E7 2.508E5

1.574E7 1.622E7 2.481E5

Major findings

t Effects of mooring inertia and damping was substantial

conditions

xico and

Refined models added the effect of wave-drift damping and viscous

forces. Consistent choices of damping and wave input were

considered. The model was found to improve good agreement.

es Effects of tethers and mooring lines on hull motions were compared

ng the

e Model

Numerical tool COUPLE was developed as suitable code

In presence of collinear currents, the low frequency surge and pitch

motions appreciably reduces due to the increase in viscous damping

Centrifugal and axial divergence force components were strongly

dependent on wave conditions

Coupled dynamic analysis programme COUPLE was developed.

Mooring line tension at coupled dynamic approach were eight times

larger than that quasi static approach

Coupling of the stiffness matrix played an important role in the

dynamic behaviour of Spar platform

wave Different kinds of instability phenomena like nT sub-harmonic

oscillations, symmetry breaking bifurcation and aperiodic responses

might occur in slack mooring systems

TRC in

s

Two programme developed by OTRC gives similar responses but not

exactly the same

ental Conservatism and uncertainties level in traditional methods can be

reduced by ANN and it can be used as a reliable alternative solution

approach

eather SPAR-Ring was the most adaptable floating structure for

construction in the North West Russian region

Mooring line damping was found to be substantial

r wave,

ea, Current

Coupled integrated model was found most idealized
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and Larsen [86] proposed an approach for simultaneous coupled
dynamic analysis of floater, mooring and riser system. Turret–
moored ship functioning at water depths 150 m, 330 m and
2000 m were considered. The turret motions, turret forces and
line tensions from separated analysis, experiments and coupled
analysis were evaluated. There was a good agreement between
experiments and coupled analysis outputs.

Irani et al. [87] presented results of wave basin model tests of a
Spar platform. The interaction of the risers with the Spar keel
plate and the interaction of the buoyancy cans with the Spar hull
did not account for the total damping contributions from the
risers to the Spar heave response. Estimates of the damping
contributions from the buoyancy can/Spar hull interaction were
much more than the damping contributions from the riser/keel
plate interactions. Cobly et al. [88] presented results of a generic
Spar platform subjected to a 100 years extreme hurricane condi-
tion. The study attempted to identify the coupling effects by
direct comparison of a coupled and decoupled analysis using
computer code SIMO. When the coupling of mooring/riser with
the vessel response was reinstated, 10–30% reductions in
extremes than de-coupled condition were obtained. The amount
of reduction was generally increased with the water depth. Taking
the above reductions into consideration the design of mooring/
riser at an early stage in the design could result in significant cost
savings.

Gupta et al. [89] developed an analysis tool (ABASIM) to
envisage the dynamic conduct of platform, mooring lines and
risers. The programme combined ABAQUS and MLTSIM. Coupled
response predictions alleviated fears about instability of Spar
shapes to long period waves. Response predictions also showed
that the heave of a classic Spar could be as low as a truss Spar
when additional damping due to mooring lines and risers were
considered. Based on results, it was concluded that the current
drag on mooring lines and risers could be significant and should
be included in the response predictions. Chaudhury and Ho [90]
developed an integrated system of risers, mooring lines, and
platform in ABAQUS. The dynamic equilibrium of the Spar system
and non-linear soil mooring line interaction were taken into
account. A non-linear integrated coupled dynamic analysis of
floater (NICDAF) was developed, which was shown to predict
vessel motion accurately in a fraction of time compared to
ABAQUS. Case study results showed that the difference in pre-
dicted vessel motions between NICDAF and ABAQUS were negli-
gible for static offset and mostly acceptable for standard deviation
of dynamic motion. The mean tensions in the mooring lines could
also be predicted fairly well by NICDAF, while the agreement in
standard deviation of tension was poor. It was concluded that, for
accurate prediction of dynamic motions of risers and mooring lines,
full dynamic equilibrium of the risers, mooring lines, and platform
system must be maintained. Following the similar work a new
method of coupled analysis was developed by Chaudhary [91]. The
programme could compute six rigid body motions. The code
achieved substantial saving in computational time. For platforms
operating in deep-water, the restoring force contributions of risers/
mooring lines were found to be important, hence coupled analysis
was recommended to be essential.

Astrup et al. [92] reported the importance of mooring and
risers coupling when floating production systems extended to
deeper water. For deeper water, the inertial mass, viscous damp-
ing, current loading and restoring effects due to both of mooring
and riser system are essentially modelled to precisely predict the
responses. The coupling effects due to the mooring and riser
systems typically tend to reduce the low frequency motion of
Spar platform compared to the traditional de-coupled approach.
The ability for more accurate prediction of the low frequency Spar
motions could consequently contribute to a smaller and economic
mooring/riser system ensuring a lighter and economical Spar
platform. Kim et al. [93] provided an assessment of the existing
industrial capability to predict the responses of several types of
deep water floating production systems (TLPs, and SPAR). The
scatter in low frequency and high frequency predicted response
were generally larger than those in the wave frequency range.
Damping caused by the mooring line and risers increased with
water depth and had more impact on low frequency responses.
The low frequency responses were found to be more important
contributors to the total responses as depth increased. The
responses were observed to be dependent on the mooring line
design, low frequency forces and damping.

Ma and Patel [77] presented an approach based on a newly
launched Deep-water Non-linear Coupled Analysis Tool (DeepCAT)
for obtaining nonlinear coupled behaviours among platform and
moorings/tendons as well as risers. The analysis tool consists of
two numerical algorithms. First was the time domain platform
motion simulation code (COUNAT) and the second was time
domain cable dynamic analysis code (CABLE3D). The results
showed large alterations in mean offsets due to coupled and
uncoupled analyses for a 100 year loop current condition. The
RMS values of the Spar’s low frequency motions and tensions in
mooring line obtained in coupled analysis were found to be smaller
compared to uncoupled programme output. Zhang and Zou [94]
dealt with the coupling upshots of risers and supporting guide
frames up on hull motions and mooring line dynamics. The
resisting moment induced by the contact forces on the support
guides and keel joints had significant impact on both the pitch/roll
motion and the mooring line tensions. The comparisons showed
the enhanced method in use (DeepCAT) was able to simulate the
dynamic response of Spar accurately in presence of non-collinear
wave, wind, and current. Smaller heave and pitch/roll motions,
caused reduction of hull draft and solid ballast in the keel tank.
Those reductions had significant impacts on size and weight of
hull, mooring lines and risers.

Tahar et al. [95] performed nonlinear coupled hull/mooring/
riser dynamic analyses of a classic Spar, numerical simulations
were conducted for 100-yr hurricane environment with non-
parallel wind, wave, and current. Several different riser models
were investigated. The first model of riser was an elastic rod
extended to the keel and free to slide in vertically but constrained
at horizontal direction. It was seen that neglecting the portion of
riser inside the Spar hull resulted in the over-estimation of the
pitch response. The second model of riser consisted of a simple
buoyancy-can modelling, which significantly reduced the max-
imum pitch/roll responses. Ding et al. [96] developed a numerical
code (COUPLE) for computing six degrees of freedom of a moored
floating platform interacting with its mooring/riser/tendon sys-
tem dynamically. The computation of potential wave load on a
moored structure was carried out based on diffraction wave
theory using commercial code WAMIT. The original code
CABLE3D was extended for large elongation elements in mooring
lines. COUPLED6D had been applied to the study of moored
classic Spars and mini TLP. Comparisons with the measurements
of the corresponding model tests indicated that it was reliable
and effective for the study of a floating off-shore structure
dynamically interacting with its mooring/riser/tendon system.

Koo et al. [97] investigated nonlinear multi-contact coupling
amongst vertical risers and guide frames through the Spar moon-
pool. The riser was treated as an elastic rod truncated at the keel
position (truncated riser model). Another assembly considered
allowed the risers to slide vertically with constant tension
keeping constraint horizontally. The truncated riser model
neglected the segment of the riser inside the moon-pool which
caused overestimation of Spar pitch. The risers were extended
inside the moon-pool marinating representative boundary
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conditions. The gap effects among the guide frames and buoy-
ancy-cans were modelled by means of three categories of gap
springs. The multi-contact coupling forces among the risers and
the riser guide frames had little upshot on Spar displacement
motion (surge) and tension in line. Yung et al. [98] carried out a
model test for vortex induced vibration (VIV) of Spar hull at David
Taylor model basin (DTMB) set at Carderock division in United
States naval surface warfare centre. Using the Hoover’s Deep draft
caisson vessel (DDCV) as an example, it was demonstrated that
the developed approach of model test was reliable for VIV
assessment. The approach was based on governing physics and
did not require factoring of model test results or distortion of
model geometry to match field observations. It was a distinct
advantage in establishing confidence for the method to be used
for future designs. In addition, the VIV test rig and test methodol-
ogy were also applicable to VIV study of other types of structures.

Kim et al. [99] performed vessel/mooring/riser dynamic
coupled analysis using a turret-moored, tanker based FPSO at
1830 m deep water. The vessel motions and tension in mooring
were tested at OTRC wave basin under non-parallel wind–wave–
current 100-year hurricane environment representative of the
Gulf of Mexico. Equivalent truncated mooring system results
were evaluated with the OTRC 1:60 model-testing results. It
was found that the dynamic mooring tension could be underrated
while using the truncated mooring system. Garrett [100] carried
out fully coupled analysis of floating vessel–mooring–riser sys-
tem. Vessel motions were driven by means of environmental
forces and restrained by the mooring–systems’ forces. The accu-
racy and efficiency of the measures were illustrated with a large
semi-submersible attached by 16 mooring lines as well as 20
risers. It was shown that the progression provided was accurate
and efficient.

Rodrigues et al. [101] presented optimized numerical tools
aimed at floating platforms’ coupled analysis for off-shore oil
exploration. The formulation for the spatial as well as time
discretization of the structural model intended for the lines was
presented. Two domain decomposition approaches were well
thought-out. Sub-cycling technique considered the natural parti-
tion that existed between the hull and the lines. And the second
technique considered the internal decomposition of the mesh of
finite elements for representing risers and mooring lines. The
methods were devised keeping in view their computerized
application with parallel architecture. Low and Langley [102]
compared various methods for floating structures’ analysis with
the rigorous fully coupled analysis in time domain as a yardstick
for the accuracy. Two novel methods were presented. The first
was an enhancement of the frequency domain approach by a
linearization of the geometric nonlinearities. The enhancement
was simple and improves the prediction of low frequency vessel
response at a minimal computational expense. Nevertheless,
there were still discrepancies with the time domain results due
to certain limitations. The other method was a hybrid method
that simulated the low frequency responses of the coupled
system in time domain plus frequency domain for the wave
frequency response. The method was found to be almost accurate
as fully coupled analysis but required only one-tenth computa-
tional strength, even for a geometrically highly nonlinear
system.

Tahar and Kim [103] developed a numerical tool for deep
water floating platforms anchored by polyester mooring lines.
Large elongation as well as nonlinear stress–strain relationships is
allowed which was typically observed in polyester fibres. The Rod
theory was followed for mooring-line dynamics. Static and
dynamic behaviour of a classic Spar with polyester mooring lines
and a tensioned buoy were carried out. The mean offset, motions,
and tension with polyester lines could be poles apart from the
original rod theory result considering linear elastic lines. Low and
Langley [104] presented a hybrid approach for coupled analysis in
time/frequency domain of vessel/mooring/riser. The vessel was
modelled as a six dof consisting of a rigid body. The lines were
discretized as lumped masses linked with linear extensional and
rotational springs. A good agreement was found for the suggested
method with fully coupled time domain analysis, when used for
relatively shallow water depths. Low [105] used the same hybrid
method to envisage the extreme responses of coupled floating
structures. Yang and Kim [106] carried out coupled analysis of
hull–tendon–riser for a TLP. The mooring line/riser/tendon
system was modelled as an elastic rod. It was connected to the
hull with linear and rotational springs. The equilibrium equations
of hull and mooring line/risers/tendon system were solved simul-
taneously. Table 8 illustrates the state of the art development of
the Spar–mooring–riser system for energy exploration from
deep water.
4.2.2. Truss Spar

Truss platforms were introduced by Kerr-McGee in 2001 when
the Nansen was mounted in the Gulf of Mexico Truss SPAR
Platform. The Truss Spar design has three main components:
(1) hard tank, (2) truss section, (3) keel tank. The hard tank
delivers the crucial in-place buoyancy intended for the Spar. The
truss section offers the separation between the keel tank and hard
tank and supports the heave plates. The keel tank (‘‘Soft tank’’)
holds the fixed ballast and entertains as a natural hang-off locality
for export pipelines and flow lines. Perdido SPAR Shell’s most
recent Truss SPAR broke the deep water record and will be
operational in 2010. Truss SPARs are characterized by the tubular
members that provide a linking between hard tank and keel. The
truss system also gives support to the heave plates which
improve stability by reducing heave.

Kim et al. [107] performed the non-linear hull/mooring time
domain coupled analysis of a truss Spar platform in waves
considering collinear steady wind and currents. The results were
compared with experimental values and uncoupled analysis.
The first and second order wave forces, added mass, radiation
damping, and wave drift damping were calculated from a second-
order diffraction/radiation hydrodynamic code, WINTCOL. Time
series of total wave force was generated based on a 2-term
volterra series model. Hull/mooring coupled dynamics was solved
by means of a finite element method based time-domain analysis
code, WINPOST. The mooring lines were coupled to the platform
by dint of generalized springs and dampers. A case study was
accompanied aimed at the Marlin truss Spar with 9 taut mooring
lines in 988 m water depth. The motion and tension spectra in
uncoupled analysis with a non-linear mass-less spring was
compared with those obtained from fully coupled analysis.
It was observed by numerical results that the line dynamics were
very important for the mooring design, which was not detected
by quasi-static mooring analysis. The large dynamic tension
indicated that the dynamic or fatigue analyses should be carried
out in a rigorous way for deep water floating platforms with taut-
leg mooring. The discrepancy between coupled and uncoupled
analyses in low frequency motions and tension was small. The
coupled analysis capability for such types of complex systems
offered the potential to optimize high cost systems. Technical
aspects of Truss Spar has been analyzed and studied by a very few
researchers [43,49,107–110]. This type of structure minimizes the
structural volume changing the lower portion of hull into truss.
Therefore, the truss Spar is regarded as another competitive and
cost-effective floating structure for deep and ultra-deep water oil
and gas production.



Table 8
Advancement of Spar–mooring–riser system.

Structural configuration Researchers Application Major findings

Floater–mooring–riser system Turret-

moored ship

Ormberg

and Larsen

[86]

150 m,330 m,2000 m water depth Separate analysis under predicts mean off-set and over

predicts LF motions especially in deep water

Spar–buoyancy can–riser Risers attached

at Spar keel plate and can with Spar hull

Irani et al.

[87]

Wave basin Damping contributions from buoyancy can/Spar hull

interaction were much more than damping contributions

from riser keel plate interactions

Generic Spar platform Colby et al.

[88]

100 years extreme hurricane conditions Coupling of mooring and riser system with the vessel

response shows large reductions in extremes in the range of

10 to 30 per cent compared to de-coupled condition

Spar platform–mooring lines–risers Gupta et al.

[89]

Waves and current. Damping in heave

response included

Analysis tool (ABASIM) was developed to predict the

responses. Current drag on mooring lines and risers could

be significant and should be included in the response

predictions

Integrated system of risers, mooring lines

and platform

Chaudhury

and Ho [90]

915 m, 1830 m, 3050 m water depth, Wave

and current

For accurate prediction of dynamic motions of risers and

mooring lines, full dynamic equilibrium of the risers,

mooring lines, and platform system must be maintained.

Spar–mooring–riser system Astrup

et al. [92]

Wind and current excitation, viscous hull and

mooring damping considered

The ability for more accurate prediction of the low

frequency Spar motions could consequently contribute to a

smaller and less expensive mooring and riser system and

hence a lighter and economical Spar platform.

Spar and TLP Kim et al.

[93]

Deep water environment The responses were observed to be dependent on the

mooring line design, low frequency forces and damping

Integrated coupled system of risers,

mooring lines and platform

Chaudhury

[91]

915m, 1830m, 3050 m water depth. Wave and

current

For platforms operating in deep water, the restoring force

contributions of the risers and mooring lines were found to

be important, hence coupled analysis was recommended to

be essential.

Hull–mooring–riser–supporting guide

frame

Zhang and

Zou [94]

Non-collinear wave, wind, and current Performing fully coupled dynamic analysis is recommended

including contact forces to remove unnecessarily

conservative results and to improve the economics of the

field development.

Classic Spar Hull/mooring/riser 14 chain–

polyester–chain mooring lines and 23

buoyancy can supported vertical risers

Tahar et al.

[95]

1830 m depth. 100-yr Hurricane condition

with non-parallel wind, wave, and current

Neglecting the portion of riser inside the Spar hull resulted

in the over-estimation of the pitch response. Riser consisted

of a simple buoyancy-can modelling significantly reduces

the maximum pitch/roll responses.

Classic Spar Hull/mooring/riser. 14 chain–

polyester–chain mooring lines and 23

buoyancy cans supported vertical risers

Tahar and

Kim [103]

1830 m depth. 100-yr Hurricane condition

with non-parallel wind, wave, and current

A theory and numerical tool are developed for the coupled-

dynamic analysis of a deep water floating platform with

polyester mooring lines.. It is seen that the mean offset,

motions, and tension with polyester lines can be different

from those by original rod theory with linear elastic lines.

Mooring/riser/tendon system. Classic Spar

and TLP

Ding et al.

[96]

Wave, wind Corresponding model tests was reliable and effective for

floating off-shore structure dynamically interacting with

mooring/riser/tendon system

Hull/mooring/riser Koo et al.

[97]

Riser modelled as an elastic rod truncated at

keel and free to slide in vertical and restricted

in horizontal direction

Both pitch and roll motions were reduced significantly

when the effects of the extended risers and buoyancy-cans

inside the moon-pool were considered. The multi-contact

coupling forces between risers and riser guide frames had

little effect on the Spar surge motion and the most loaded

line tension

Vessel/mooring/riser. Turret-moored,

tanker based FPSO

Kim et al.

[99]

1830m water depth. Wind–wave–current 100-

year hurricane condition in the Gulf of Mexico

The numerically predicted global vessel motions were also

in good agreement with the measurements. It was found

that the dynamic mooring tension could be underestimated

when truncated mooring system was used

Vessel–mooring–riser Garret

[100]

Vessel motions restrained by mooring and

riser systems

The procedures provided claimed to be accurate and

efficient for fully coupled analysis of floating production

systems

Hull–mooring–riser Rodrigues

et al. [101]

Sub-cycling technique and internal

decomposition technique considered

The methods were devised keeping in view their

implementation in computers with parallel architecture

Floater/Mooring/riser Low and

Langley

[102]

Vessel modelled as a rigid body and lines

discretized as lumped masses connected by

linear extensional and rotational springs

Hybrid method was found to be nearly as accurate as fully

coupled time domain analysis but required only one-tenth

of the computational effort, even for a geometrically highly

nonlinear system.

Vessel/mooring/riser Rodrigues

et al. [101]

Vessel modelled as rigid body with six dof,

lines discretized as lumped masses

The method was found to be in good agreement with fully

coupled time domain analysis, when used for relatively

shallow water depths

Hull–tendon–riser Yang and

Kim [106]

The mooring line/riser/tendon as elastic rod

connected to the hull by linear and rotational

springs

Sudden disconnection of tendon causes the change of

stiffness and natural periods, the imbalance of forces and

moments of the total system, and possibly large transient

overshoots in tension at the moment of disconnection
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4.2.3. Cell Spar

The Cell Spar was also designed by Kerr-McGee in the Red
Hawk project Cell SPAR Platform. Red Hawk was installed in the
Gulf of Mexico and made operational in 2004. Cell SPARs have
several design features including: the Hard Tank which is made
up of six cylindrical tubes that surround a seventh central tube.
Each of these tubes is 6.1 m in diameter and contains variable-
ballast tanks and redundant, independent cells. The middle hull
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section is basically the extension of three tubes among the seven
cylindrical tubes. The section serves as a rigid connection
between hard tank and keel tank. In addition, the lower section,
or keel, contains the permanent ballast.

Red Hawk SPAR is renowned to be the first and only cell Spar.
The separate tubes are connected by heave plates. Heave plates give
the structure added stability by reducing the force transferred from
ocean waves and current. Zhai et al. [111] have shown the devel-
opment history, and introduced the structural forms of Cell Spar
platform. According to the environmental conditions of the South
China Sea and the operational requirements of a platform, the
optimized selection of cell Spar platforms is studied. Finite element
analysis of the Cell Spar platform by using ANSYS is conducted and
the select rules of environmental load are given. Structural strength
analysis of the platform under survival conditions and operation
conditions are also conducted. The stress level and strength demand
of overall structure and key positions are determined. Finally, the
methods for Overall Structural Strength Analysis of the Cell Spar
Platform are set up. Lim et al. [112] carried out experimental study
on motion characteristics of the cell Spar platform.

4.2.4. Cell–truss Spar

Due to economic concerns, the cell and truss element has been
added together in the same Spar platform by several researchers.
Zhang et al. [113,114] have performed a numerical study on the
hydrodynamic performances of a newly adopting cell Spar notion.
They included cell–Spar combination as offshore floating structure.
Experimental research along with a numerical study on the global
performances of the cell–truss Spar platform was conducted by
Zhang et al. [115]. Zhang et al. [116] studied the effect of coupling
for the cell–truss Spar platform. The Spar mooring/riser was
modelled via three methods namely, quasi-static coupled, semi-
coupled and coupled. The results from frequency-domain as well as
time domain analyses were compared with experimental data.

4.3. Spar platform in Malaysian waters

Malaysia recently installed its first Spar which is a compliant
floating Spar platform set up at 1330 m depth at the Kikeh field in
2007 [46]. The structural arrangement for this deep water installa-
tion fits into the category of truss Spar. It has been observed that only
the Kebabangan field is traced in shallow water depth of around
200 m [44,117]. All other six sedimentary basins are in deep water
regions having water depths more than 1000 m. Thus, the fixed
jacket type of platform leads to expensive installation costs for the
production of oil and gas. Spar platforms may provide competent
solutions in these locations and sites. The Spar contains the assis-
tances of offshore structures ensuring desirable floating behaviour of
its own. Among the seven oil and gas fields in Malaysian sedimentary
basins with different water depths (Table 9), the Spar platform in
Kikeh field reflects the potential for success in Malaysian waters.

The Spar hull at Kikeh is 142 m long, with a diameter of 32 m
and has a steel weight of approximately 12,000 mt. The topsides
Table 9
Offshore oil and gas fields in Malaysia at different

water depths.

Field name Water depth (m)

Kikeh 1300

Gumusut/Kakap 1220

Jangas 41000

Ubah Crest 41000

Pisangan 41000

Kamunsu 41000

Kebabangan 4200
facilities weigh approximately 3000 mt and provide a 25-slot
wellbay for dry tree wellheads. The Kikeh development is located
in offshore Block K Malaysia, which is operated by Murphy with
an 80% working interest. Petronas Carigali, a wholly owned
exploration and production company of Petronas, holds the
remaining 20%. The Kikeh area has a recoverable reserve base in
excess of 400 million barrels with associated expansion ability.
This Spar platform is the first one ever installed outside the Gulf
of Mexico. It is the first application of tender-assisted drilling on a
Spar platform. This contract increases Technip’s presence in
Malaysia and reinforces its leading position in deep water
developments through its field-proven floating production Spar
platform.

Existing sedimentary basins contribute significantly as the main
sources of oil and gas, which can compensate the rising demand for
these energies. Among the continental shelf offshore of Malaysian
waters, deep basins are more suited to be installed by floating
platforms. Especially the Sarawak basin off the East Malaysian state
Sarawak and the Sabah basins off the East Malaysian state Sabah,
located at ultra-deep water depths. The most challenging job is to be
able to explore deep-water energy sources from the eastern con-
tinental shelf. High functioning costs and extensive technical exper-
tise indicate the aptness of floating platforms like the Spar in this
region. The newly adopted oil production project which is in the
planning and construction phase is the Gumusut/Kakap project
situated off the shores of Sabah at 1200 m water depth. This
field is attempting to install the regions’ first deep-water floating
production system possessing a processing capacity of 150,000 bbl/
d, using 19 subsea wells. Apart from this, the offshore Sarawak basin
is located at an ultra-deep water depth of 2000 m, where other
types of structures other than the compliant floating platform will
not be practical or viable. Considering the water depth, structural
safety and economy, it can be concluded that the floating Spar
platform has immense potential in the Malaysian offshore region.

4.4. Future research for Spar platform

The technology of oil and gas exploration is blooming for deep
water ocean deposits. There are quite few configurations of Spar
platform that have been reported. In deeper waters, Spar plat-
forms are found to be economical and efficient for drilling,
production, processing and storage of ocean reserves. Although
numerous studies have been accomplished on offshore floating
Spar platform, there are quite few issues that are yet to be
explored and investigated. Following are the important aspects
required to be addresses for future work in this area:
�
 For precise behaviour of Spar platform consideration of math-
ematical model comprising platform, mooring lines and risers
in one system is essential.

�
 Synthetic mooring lines and composite risers can be incorpo-

rated to make the structure more economical and efficient.

�
 Heave response of platform can be reduced by increasing

sectional area at Spar bottom as an alternate approach.

�
 Introducing buoys on mooring line length can reduce the

maximum mooring tension.

�
 Inclusion of wave directionality effect and higher order wave

forces will make the analysis more realistic.

�
 Fluctuating and mean wind components act on the super-

structure of Spar platform. It is a source of wave generation in
substructure region. Hence it is important to model the bluff
configuration of superstructure and obtain the wind induced
forces on the same while the substructure experiences the
hydrodynamic loading. The existing works may be extended to
the wind and wave induced vibration of the Spar platform
system.
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�
 The vortex induced vibration in the catenary mooring lines
contributes cumulative fatigue damage which should be prop-
erly investigated.

�
 There is an ample scope to improve the solution technique of

nonlinear system of dynamic equations. Accuracy and faster
convergence may be achieved if an improved algorithm is
adopted.

�
 Probabilistic risk assessment is essential for the massive and

expensive Spar installations in energy exploration. Stability
and serviceability limit state are required to be incorporated.
For the entire structure reliability, fault tree approach may be
adopted.

�
 Comprehensive stability analysis of Spar platform and mooring

lines is essential to be studied to get proper stable configura-
tion under long duration environment loading.

�
 As most of the offshore fields of Malaysia are under deep and

ultra-deep water, optimal configuration of floating Spar plat-
form is to be assessed for massive energy exploration.

5. Conclusion

The Malaysian energy zone is still predominantly reliant on
primary energy sources such as oil and gas. The energy industry is
experiencing a lot of growing energy demand (7–8%) in this
country. There is a pressing need to create newer fields and
sectors for oil and gas energy exploration so as to meet the
severely increasing fuel demand. The research carries out a
literature survey of the up to date research knowledge on oil
and gas status in Malaysia. Offshore reserves of oil and gas energy
have been well investigated to enquire their projected contribu-
tion in the fuel energy sector. The primary energy exploration
strategy from the Malaysian deep water region and offshore
compliant floating Spar platforms for oil and gas exploration has
been acquainted with. Assessment on the technical development
of the Spar platform has been given. The various kinds of
operational Spar platforms have been critically explored. The
structural configurations of Spar structures in deep ocean envir-
onment described in various existing literature have been
reviewed. This paper also attempts to address works of Spar
platform subjected to various environmental loading of deep-
ocean concerning. The Spar platform has been found as an
innovative and structurally and economically suitable marine
structure ideal to conduct oil and gas exploration in the deep
sea. The study indicates that the Spar platform has a huge
potential in the future; it is expected to greatly promote opera-
tions on the sea and stabilize production by improving technical
parameters, economic concerns and other aspects. Spar platform
operation and use in this Malaysian region is still at a developing
stage to explore deep and ultra-deep water oil and gas. Malaysia
must strive to enhance the oil and gas energy exploration sector
through installing Spar platforms in its deep waters so as to enjoy
greater efficiency and cost effectiveness.
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[15] Toklu E, Güney MS, IsIk M, ComaklI O, Kaygusuz K. Energy production,
consumption, policies and recent developments in Turkey. Renewable and
Sustainable Energy Reviews 2010;14:1172–86.

[16] Tsai W-T. Energy sustainability from analysis of sustainable development
indicators: a case study in Taiwan. Renewable and Sustainable Energy
Reviews 2010;14:2131–8.

[17] Valkila N, Saari A. Urgent need for new approach to energy policy: the case
of Finland. Renewable and Sustainable Energy Reviews 2010;14:2068–76.

[18] Stigson P, Dotzauer E, Yan J. Climate and energy policy evaluation in terms
of relative industrial performance and competitiveness. International Jour-
nal of Green Energy 2009;6:450–65.

[19] Genoud S, Lesourd J-B. Characterization of sustainable development indi-
cators for various power generation technologies. International Journal of
Green Energy 2009;6:257–67.

[20] Deilmann C, Bathe K-J. A holistic method to design an optimized energy
scenario and quantitatively evaluate promising technologies for implemen-
tation. International Journal of Green Energy 2009;6:1–21.

[21] Arabian A. Synergy in green power production methods and siting. Inter-
national Journal of Green Energy 2010;7:143–52.

[22] Finkl CW, Charlier R. Electrical power generation from ocean currents in the
Straits of Florida: some environmental considerations. Renewable and
Sustainable Energy Reviews 2009;13:2597–604.

[23] Grabbe M, Lalander E, Lundin S, Leijon M. A review of the tidal current
energy resource in Norway. Renewable and Sustainable Energy Reviews
2009;13:1898–909.

[24] Guo D-G, Zhang X-Y, Shao H-B, Bai Z-K, Chu L-Y, Shangguan T-L, et al. Energy
plants in the coastal zone of China: category, distribution and development.
Renewable and Sustainable Energy Reviews 2011;15:2014–20.

[25] Martı́n Mederos AC, Medina Padrón JF, Feijóo Lorenzo AE. An offshore wind
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