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Abstract

As a result of good modeling capabilities, neural networks have been used extensively for a number of chemical engineering applications

such as sensor data analysis, fault detection and nonlinear process identi®cation. However, only in recent years, with the upsurge in the

research on nonlinear control, has its use in process control been widespread. This paper intend to provide an extensive review of the various

applications utilizing neural networks for chemical process control, both in simulation and online implementation. We have categorized the

review under three major control schemes; predictive control, inverse-model-based control, and adaptive control methods, respectively. In

each of these categories, we summarize the major applications as well as the objectives and results of the work. The review reveals the

tremendous prospect of using neural networks in process control. It also shows the multilayered neural network as the most popular network

for such process control applications and also shows the lack of actual successful online applications at the present time. q 1998 Elsevier

Science Ltd. All rights reserved.

Keywords: Chemical process control; Neural networks; Simulation; Online application

1. Introduction

In recent years an active interest in the development and

application of nonlinear control methodologies has

emerged. Nonlinear control now occupies an increasingly

important position in the area of process control engineering

as re¯ected by the tremendous increase in the number of

research papers published in this area recently. However, in

many nonlinear systems it is extremely dif®cult and expen-

sive to obtain an accurate model of the process from ®rst

principles. This dif®culty has limited the usage of nonlinear

models to regions and systems where the model obtained is

reliable. In fact, one of the chief barriers to the more wide-

spread use of nonlinear models in advanced modeling and

control techniques in the chemical/petroleum industry is the

cost of model development and validation. Normally model-

ing costs account for over 75% of the expenditures in the

design of an advanced control project.

At the same time, the recent upsurge in research on neural

networks, has made it readily available as an attractive

method for identifying nonlinear processes. Since neural

networks can learn by example, they offer a cost-effective

method of developing useful process models. These connec-

tionist models also have the ability to learn the frequently

complex dynamic behaviour of a physical system. In fact

recent work, e.g. Cybenko [1] and Hornik et al. [2], have

proved that any continuous functions can be approximated

to an arbitrary degree of exactness on a compact set by a

feedforward neural network comprising two hidden layers

and a ®xed, continuous non-linearity.

Although neural network application in various aspects of

engineering have been around for some time, there have

been a `explosion' of its applications in areas relevant to

chemical engineering only recently. This can be attributed

to many reasons, some of which are as follows:

1. The tremendous hardware advances in digital technology

over the past decade or so have enabled simulations of

neural nets to be made both economically and with rela-

tive ease and speed. Although neural networks are paral-

lel devices, the majority of their simulations at present

are being simulated sequentially on serial computers.

Neural networks will be more ef®ciently utilized as

parallel computing technology becomes more readily

available.

2. Application of neural networks for sensor pattern classi-

®cation have been found to be superior to the traditional

algorithmic techniques or the expert system approaches.
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3. Neural networks offer the promise of being able to

extract information from plant in an ef®cient manner

with normal availability of rich data. In some cases, it

may not be cost effective to develop models from ®rst

principles at all times, especially those dealing with

severe/unknown non-linearities commonly found in

chemical process systems. Neural networks offer a

simpler and ef®cient alternative.

4. Some practitioners contend that neural networks may be

easier to use and apply in the real process plant, with

dif®cult to handle nonlinearities, as compared with the

modeling approach which can be subjected to various

modeling errors.

5. Finally the versatility in structure and application of

neural networks enables them to be utilized in the middle

ground between conventional model-based approaches

and black box approaches for solving many classes of

problems. These hybrid-type approaches have been

another factor which have further attracted their use in

chemical process systems recently.

Although they have been successfully used for a number

of chemical engineering applications such as sensor data

analysis, fault detection and process identi®cation, its wide-

spread use for chemical process control has only emerged

lately. This paper intends to review all such process control

application in the chemical engineering ®eld in recent years.

Although there have been some isolated reviews previously

[3, 4], this paper presents an extensive review of its applica-

tion in chemical process control presented in the open litera-

ture. Our survey in this paper involves its incorporation in

three major categories of control i.e. inverse-model based,

predictive and adaptive control techniques, both in simula-

tion and online applications. Under these different control

techniques, we will only discuss the general description of

their methods as the detailed discussion of these various

techniques utilizing neural networks can be found elsewhere

[5]. In general, the predictive control methods have the

advantage of being stable with less drastic control actions,

but with more computational time required. The inverse-

model-based control methods have the advantage of giving

faster implementation, but require more drastic control

actions which tend to lead to instability problems. The adap-

tive control methods on the other hand are suitable for

models with varying parameters but they are also prone to

instability problems especially in nonlinear systems.

The majority of the neural networks utilized in these

applications are the multilayered feedforward type inclusive

of the radial basis function networks. Numerous references

can be found in the literature on their properties, advantages

and limitations [6±10]. The other types of networks used are

the recurrent networks and the vector quantizing network

(VQN). Various references are also available on these recur-

rent networks [11±13] while some overview and references

on VQNs will be given later. There is no clear advantage of

one network over the other as well as of one activation

function over the other. This will very much be dependent

on the user and their application and has to be looked on a

case-to-case basis. Some comparisons between the different

types of networks can be found in [14, 15] while the

comparisons between the conventional sigmoidal and the

radial basis function activation functions can be found in

[16±18].

The applications utilizing these neural-network-based

strategies are wide ranging but involve typical chemical

process systems ranging from the linear to the highly

nonlinear systems. The detail description and characteristics

of these processes can be found in standard textbooks [19±

23]. However, the most common systems used are the distil-

lation columns and the reactor systems (continuous stirred

tank reactors, bioreactors and the neutralizing reactors).

These are multivariable, nonlinear systems, which are

highly suitable for testing such control algorithms in chemi-

cal process systems. Neural networks have also been used

for other speci®c purposes such as the auto-tuning of PID

controllers [24] and have also been incorporated with other

types of techniques, such as the cerebellar model articula-

tion controller (CMAC), the B-splines network [25] and

fuzzy systems [26], which are, however, beyond the scope

of this review.

2. Neural network in model-predictive control
techniques

2.1. General description

The most commonly found control technique, which uses

neural network models is the predictive control technique. It

is de®ned as a control scheme in which the controller deter-

mines a manipulated variable pro®le that optimizes some

open-loop performance objective on a time interval, from

the current time up to a prediction horizon. Nonlinear model

prediction control refers to the general case in which the

model, performance objective and constraints are nonlinear

functions of the system variables. In this case, neural

networks are used as convenient identi®ed models to replace

the normal ®rst-principle-models in the optimization formu-

lation. The increasing popularity of the neural-network-

based-predictive-technique is due to the attraction of using

neural network models instead of other forms of model to

effectively represent the complex nonlinear systems within

the predictive methodology [24]. Some of the advantages of

using neural networks in optimal control strategies over

other conventional and linearly parametrized models are

also given in the paper of Edwards and Goh [17].

This predictive control algorithm basically involves mini-

mizing future output deviations from the set point whilst

taking suitable account of the control sequence necessary

to achieve the objective and the usual constraints imposed

upon it (see Fig. 1). This multistep predictive control strat-

egy has been shown to perform well in unstable operating
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regimes and inferential applications, but at the expense of

extra computational time. Neural networks are highly

suitable for incorporation in this approach as it is known

to be able to predict multistep ahead output values. The

neural network predicts the outputs for some k time step

into the future (y(t 1 k)) and the normal cost function, J

is used to obtain the optimal sequence of control actions

given by,

J �
XN2

k�N1

�e�t 1 k��2 1
XN3

i�1

�qidu�t 1 i��2

where N1, N2 de®ne the prediction horizon, N3 de®ne the

control horizon, e is the error between target and prediction,

q is the weighting factor and du are the change in control

sequences. The ®rst term is a measure of the distance

between network prediction and desired future trajectory

and the second term penalizes excessive movement of the

manipulated variables. This methodology is very similar to

the classical optimal control strategy except that the forward

neural net model is utilized in the equality constraint

equations instead of the nominal plant model. The gradient

and hessian matrix used for solving the optimization using

2nd order methods are normally formulated in terms of the

structure of the neural network i.e. weights and biases [27,

28].

The different advanced techniques, which have been used

by many researches for incorporating neural networks

models within their formulation include the general predic-

tive control (GPC) [29], dynamic matrix control (DMC)

[30] and receding horizon control (RHC) [31] techniques.

These techniques are very similar in their overall approach

and objective with the differences occurring in the sequence

of control implementation and in the underlying formulation

of the models and constraints. The GPC approach is

formulated with the models based on a difference-

equation scheme while the DMC approach is based on a

step-response model. In the RHC technique, feedback is

incorporated in the predictive control scheme by using the

measurement to update the optimization problem for the

next time step, when the control action is also implemented.

Note that the description of all abbreviations can be seen in

Table 1.

2.2. Applications in chemical process systems

Most of applications under the predictive control scheme

utilizes the multilayered feedforward neural network type

while a couple utilizes the recurrent type and the VQN type,

respectively. These applications, with their objectives,

system and type of network are summarized in Table 2.

The major applications are described in further details

later, beginning from the multilayered type.

In one of the earliest reported simulation work, Psicho-

gis and Ungar [32] utilized a neural network model of a

continuous stirred-tank reactor (CSTR) to control the

product composition in the conventional model predictive

scheme where they found that steady state offsets were

obtained during set point tracking. However, they made

corrections to the output, accounting for modeling errors

and unmeasured disturbances entering the process, and

obtained offset-free tracking in this case. Willis et al.

[33], Turner et al. [34], and Hunt and Sbarbaro [35]

also estimated the plant±model mismatch at each

sampling instant and utilized it to correct the predictions

from the model in their model predictive control schemes.

They implemented their control action using the receding

horizon method. Willis et al. implemented the scheme for

the control of concentration in a CSTR; Turner implemen-

ted it for the control of concentration in a distillation

column while Hunt implemented it for the control of pH

in a neutralizing reactor. Offset-free set point tracking

results were obtained by them in all these cases. Gokhale

et al. [36] used a steady-state multilayered neural-network

model to replace the tray-to-tray model used in a predic-

tive model based controller to control the product compo-

sitions in a propylene±propane splitter. They found that

the neural-network scheme, with online ®ltering,

performed slightly better than the nonlinear model-based

controller for set point changes in the top and bottom

compositions (with sluggish response for the bottom

composition). Emmanouilides and Petrou [37] utilized

neural networks in a model predictive scheme to control

the substrate concentration and pH of a complex,

nonlinear anaerobic digestion system. In his implementa-

tion, the neural network models were adapted online. The

simulation results showed that the control strategy gave
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desired set point tracking and regulation even under

process input variations and process parameter changes.

Two studies utilizing neural networks in the dynamic

matrix control (DMC) algorithm have also been reported.

Hernandez and Arkun [38] applied neural networks to esti-

mate the disturbance due to the presence of nonlinearities.

This was then added to the linear model in the DMC formu-

lation with online learning of the neural network models.

This algorithm was applied for control of concentration in a

CSTR system (with multiple steady states) for set-point

tracking and disturbance±rejection case studies. They

achieved better results in both cases as compared with the

conventional linear DMC method. In the work of Lee and

Park [39] the neural network was taught to learn about the

relationship between the disturbance pattern and the desired

control actions by minimizing the controller output due to

unmodelled effects. In this case the neural network basically

acts as a feedforward controller to cater for unknown distur-

bances in the system. This scheme was then applied to

control the compositions in a multiple reaction CSTR

system and to control the product compositions in a distilla-

tion column under disturbances and plant±model

mismatches. They found that the neural scheme performs

better than the conventional feedforward DMC controller.

The use of recurrent neural networks in these model

predictive schemes were reported in two cases. Macmurray

and Himmelblau [40] used an external recurrent neural

network to predict and control the product compositions

in a packed distillation column within the model predictive

control strategy. This was done for set-point and distur-

bance±rejection studies. They obtained the same results as

those obtained using ®rst principles model, but with less

computation time when using the neural network model.

Tan and VanCauwenberghe [41] compared three different

optimizing methods for the design of an external recurrent

neural network predictive controller based on Smith-type

prediction. They used this technique successfully to

compensate for large time delays in the control of an anae-

robic digester process under set point tracking.

The vector quantizing neural networks (VQN) were

applied by Megan and Cooper [42] to analyse both the

input and output behaviour of a process resulting from a

perturbation to the process. The VQN's are basically

discrete pattern classi®ers that compare an incoming pattern

to a library of example patterns and assign the incoming

patterns to the class of example pattern which is most simi-

lar to it. Like the feedforward networks, it consists of nodes

but every node in a VQN receives the entire incoming

pattern and produces an output of the network. The details

of the VQNs can be seen in [43, 44]. The work by Megan

and Cooper focuses on making model adaptations following

a load disturbance to a reactor under concentration control

and is also applied within a DMC algorithm for multivari-

able composition control of a distillation column, with

successful results.

3. Neural networks in inverse-model-based techniques

3.1. General description

Two approaches utilizing neural networks in the inverse-

model-based strategy are the direct inverse control and the

internal-model control (IMC) techniques. In the direct

inverse control technique, the inverse model acts as the
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Table 1

Description of abbreviations

Abbreviations Description

Control technique

D. Inv Direct inverse

M. Pred Model predictive

Adap Adaptive

FBC Feedback controller

Pb Adap Pattern based adaptive

GPC Generalised predictive controller

IMC Internal model controller

Infer Inferential

PI Proportional integral

Hybr Hybrid

Em Emulate

DMR Direct model reference

Adapt Adaptation

DMC Dynamic matrix control

Ext. DMC Extended dynamic matrix

control

GMC Generic model control

FFd Feedforward

LC Linearising controller

Objective/system

Temp Temperature

Press Pressure

Thick Thickness

Prod Product

Conc Concentration

Comp Composition

CSTR Continuous stirred tank reactor

Dis Distillation

Neut Neutralising/neutraliser

MW Molecular weight

Poly Polymerisation

Neural network

type

Ml Multilayer

Sig Sigmoidal

Hyp Hyperbolic

RBF Radial basis function

Tanh Tangent

Sym Symmetric

Log Logarithmic

VQN Vector quantizing network

Ellp Ellipsoidal

Robustness

Set pt. Set point

Dist Disturbance



controller in cascade with the system under control, without

any feedback. In this case the neural network, acting as the

controller, has to learn to supply at its output the appropriate

control parameters for the desired targets at its input. In this

control scheme the desired set point acts as the desired

output which is fed to the network together with the past

plant inputs and outputs to predict the desired current plant

input [45]. A much more robust and stable strategy is that of

the nonlinear internal model control technique, which is

basically an extension of the linear IMC method [46] (see

Fig. 2). The IMC approach is similar to the direct inverse

approach above except for two additions. First is the addi-

tion of the forward model placed in parallel with the plant,

to cater for plant or model mismatches and second is that the

error between the plant output and the neural net forward

model is subtracted from the set point before being fed into

the inverse model. The other data fed to the inverse model is

similar to the direct method. A ®lter can be introduced prior

to the controller in this approach to incorporate robustness

in the feedback system, especially where it is dif®cult to get

exact inverse models.

In most cases, presented in the literature using this

approach, the necessary control signals, from the neural

network inverse-model is computed by numerically invert-

ing the neural network forward model at each interval by

Newton's method or substitution methods based on the

contraction mapping theorem [47]. The ®rst derivative

with respect to the control input can be computed in these

techniques by the usual backpropagation method. These

numerical techniques are, however, computationally

intensive and time-consuming, they are very sensitive to

the initial estimates and they may not necessary give the

global and unique solution. A couple of cases have,

however, utilized the output, from the of̄ ine-trained neural

network inverse model, directly as the control input into the

plant without numerical computation.

3.2. Applications in chemical process systems

All applications under this category except for two cases

reported utilizing multilayered feedforward neural network

and a summary of these applications utilizing neural

networks in inverse model-based control methods can be

seen in Table 3. They are described in further details later,

beginning ®rst with those utilizing the multilayered

networks. One of the earliest reported work in process

systems was done by Psichogios and Ungar [32], who

utilized an internal model control (IMC) approach to control

product concentration in a nonisothermal CSTR with ®rst

order reversible reactions by manipulating the inlet feed

temperature. Their control strategy was concerned with

disturbance rejection where the disturbance was the change

in feed concentration. The inverse-model-based controller

was obtained by inverting the neural network model,

describing the process dynamics, using Newton's method

numerically. However, they obtained unstable results when

directly utilizing the inverse neural network models as the

controller in the IMC con®guration.

Nahas et al. [48] also utilized the IMC approach to control

the ef̄ uent concentration in a CSTR, with ®rst order
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Table 2

Summary Ð applications of neural networks in predictive control strategies

Control technique Objective System NN type Robustness Ref.

M. Pred Prod. Comp. Dis. column Ml/Sig Set pt./Dist. [33]

M. Pred. w/Feedback Prod. Conc. CSTR Ml/Sig Dist. [32]

M. Pred. Strip Thick. Rolling mill Ml/RBF Set pt. [50]

M. Pred. Prod. Conc. CSTR Ml/Sig Set pt. [27]

M. Pred. pH control Neut. reactor Ml/Sig. Set pt. [28]

DMC w/NN FFd Prod. Comp. Dis. column Ml/Hyp. Tanh Dist. [39]

Ext. DMC Prod. Conc. CSTR Ml/Sig. Set pt./Dist. [38]

M. Pred. Prod. Quality Autoclave batch curing Ml/Sig. Dist. [96]

M. Pred. pH control Neut. Ml/Sig. Set pt. [75]

M. Pred. w/Adapt. Level Conical tank Ml/Sig. Set pt./Dist. [94]

M. Pred. w/Adapt. Multivariable Evaporator Ml/Sig. Set pt./Dist. [94]

M. Pred. pH control Neut. Ml/RBF Set pt. [35]

M. Pred. Prod. Comp. Packed column Recurrent/Sig. Set pt./Dist. [40]

M. Pred. Prod. Comp. Dis. column Ml/Sig. Set pt. [36]

M. Pred. Press. Dis. column Ml/Dynamic

®lter

Set pt. [34]

M. Pred. pH control Neut. Ml/Sig. and

RBF

Set pt. [97]

M. Pred. Temp. Anthracene crystal

process

Ml Set pt. [98]

D. Pred. Conc. Digester Recurrent Set pt. [41]

DMC Conc. Dis. column VQN Dist. [42]

M. Pred pH Neut. Ml/RBF Set pt./Dist. [99]

M/ Pred w/Adapt. Conc./pH Anaerobic digester Ml Set pt./Dist. [37]



irreversible exothermic reactions. The inverse model was

obtained by numerically solving for the control action,

from the formulation of the network forward model. Filter-

ing action and time delay compensation, in the form of a

Smith predictor, were also used and offset-free results were

obtained in both the set-point and disturbance±rejection

cases. The same strategy was implemented by them in

controlling the ef̄ uent pH in a neutralization system by

manipulating the base ¯ow rate. Offset-free results were

also achieved here for set-point and disturbance±rejection

cases.

Dayal et al. [49] also implemented the IMC approach for

the control of a jacketed CSTR, with ®rst order irreversible

reactions, to keep the reactor conversion at its desired

setting. A feedback as well as reference model ®lter was

used in this case. In their study they compared the usage of a

numerically inverted neural network controller and that of a

directly trained neural network inverse-model controller
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Table 3

Summary Ð applications of neural networks in inverse-model based control strategies

Control technique Objective System NN type Robustness Ref.

IMC Prod. Comp. CSTR Ml/Hyp. Tanh Set pt./Dist. [48]

IMC Prod. Comp. Neut. Ml/Hyp. Tanh Set pt./Dist. [48]

IMC Prod. Comp. CSTR Ml/Sig. Dist. [32]

IMC Strip Thick. Rolling mill Ml/RBF Set pt. [50]

Inverse w/PI Strip Thick. Rolling mill Ml/RBF Set pt. [50]

D. Inv Prod. Conc. Fed batch bioprocess Ml/Sym. Log. Set pt. [95]

IMC Prod. Comp. CSTR Ml/Sig. Set pt./Dist. [49]

IMC pH Neut. Ml/RBF Set pt. [35]

Inv w/GMC Prod. Comp. Dis. column Ml/Hyp. Tanh Set pt./Dist. [51]

Hybr. Inv Conc Van de Vusse/bioreactor Ml/Ellp. Set pt./Dist. [53]

IMC Prod. Comp. Dis. column Ml/Sig. Set pt. [54]

IMC Conc./Temp. CSTR Ml Set pt. [59]

IMC Temp. Lime kiln Ml Set pt./Dist. [93]

IMC Conc. CSTR Ml/Hyp. Tanh Set pt. [56]

Hybr. Inv Temp. CSTR Ml/RBF Set pt. [57]

GMC/IMC Temp. CSTR Ml/Sig. Set pt. [55]

LC Temp. CSTR Recurrent Set pt./Dist. [58]

Fig. 2. Neural networks in internal-model-control strategy.



for set-point as well as disturbance±rejection studies. They

found that the directly trained neural-network inverse-

model as the controller case gave better results overall

(except for a slightly bigger oscillation at the step changes)

than the numerically inverted inverse-model method, with

yet less computational time. They also incorporated a feed-

forward±feedback strategy to improve on the disturbance±

rejection results. However, for the nonmonotonic case (i.e.

process has well-de®ned maximum conversion and the

steady state gain changes sign) the directly trained neural

network inverse-model gave unstable results, which they

accounted to the presence of input multiplicities in the reac-

tor behaviour.

Sbarbaro et al. [50] utilized the neural network inverse

models, acting as a controller, in different ways to control

the strip thickness in a steel rolling process, under normal

process disturbances. They utilized the inverse model in

series with a PI controller, in parallel with an integrator

(I) and in the IMC con®guration, respectively. Comparisons

were also made with the PI and Model Predictive techni-

ques. They found the inverse model in parallel with the

integrator gave the best results but with the IMC and

MPC techniques giving equally good control. In another

work with Hunt [35], they utilized multilayered neural

networks with radial basis functions, in the IMC strategy

to perform set-point tracking of the pH in a neutralizing

reactor. They found in this case that the control system

provided very close tracking performance with considerable

improvement over a linear controller type.

Ramchandran and Rhinehart [51] used a neural-network

inverse model to estimate the re¯ux and holdup rate which

was then incorporated in the generic model control (GMC)

strategy to control the top and bottom composition in a

distillation column. The GMC technique basically involves

incorporating the nonlinear process model directly in the

formulation of the control algorithm [52]. This was done

for set-point and disturbance±rejection cases and the tech-

nique was found to be better than the PI controller with

feedforward features. Aoyama et al. [53] used a neural

network to construct a minimum-phase model of a non-

minimum phase system in conjunction with the analytical

inverse of the system model within the IMC strategy. This

scheme was applied successfully to control the system

composition in a Van de Vusse reactor and a bioreactor

system under set-point and disturbance±rejection cases.

Basualdo and Ceccato [54] used the neural networks in

single-input single-output (SISO) and multiloop IMC struc-

tures for controlling the product compositions in a distilla-

tion column. In this method the inverse neural network

model acts as feedforward compensation for nonlinearities

for both the controller and the internal model and for adapt-

ing the gains of the controller and model online. They

obtained good results in set point tracking in conjunction

with the conventional PI controller in the feedback loop.

Piovoso et al. [55] utilized neural networks in the GMC

and IMC strategies, respectively, to control the reactor

temperature in a ®rst-order, non-adiabatic CSTR system.

In the GMC approach, they used a neural network to

approximate the functional form of the nonlinear function

describing the energy balance which is required in the

controller formulation. In the IMC strategy, they however

utilized a PI controller (tuned on the neural network forward

model) to estimate the needed control input to produce the

required output. They performed set point tracking studies,

for the ideal case and with model-mismatch, and found that

the neural-network-based methods gave comparable results

to the pure GMC and global linearising feedback techni-

ques. Lightbody and Irwin [56] developed a novel nonlinear

model control strategy which utilizes the nonlinear neural

network model of the plant to act as a medium for the

estimation of the parameters of the linear discrete-time

model (assumed for the plant). This linear model is then

utilized in conjunction with Kalman's method to design

the inverse controller, wherein the parameters of this

controller is adapted at each sample instant. They used

this approach for set-point tracking of concentration in a

CSTR system, which outperformed the conventional PID

control system. Shah and Meckl [57] used a neural net in

parallel with a proportional controller to control temperature

in a CSTR. The neural network they used consists of Gaus-

sian activation functions and is trained to learn the inverse

dynamics of the CSTR with and without parameter varia-

tions. Their simulation results for pseudo-step changes indi-

cate that the neural network can be applied online, even with

parameter variation, provided the input trajectory suf®-

ciently excites the system under consideration.

Two applications using recurrent type networks are

described as follows: Nikolaou and Hanagandi [58] used a

recurrent neural network within a state feedback linearising

control strategy to control the temperature of a non-isother-

mal CSTR system. In this case the recurrent neural network

acts as the open-loop observer supplying the network states

to the linearising control formulation. An external linear

controller was also applied to the system and the whole

strategy, implemented for set-point tracking and distur-

bance±rejection studies, showed better performance than

the linear, optimally-tuned controller. Scott and Ray [59]

developed recurrent neural networks (which also have direct

connections from inputs to outputs) where the topology and

initial weights of the network were determined from an

approximate linearised model of the system. These

networks were then consequently pruned to remove the

weights with negligible values and these networks were

then applied in various model-based control methods such

as the direct control and IMC methods. These methods were

applied to the task of controlling both the concentration and

temperature of a non-isothermal CSTR under set-point

regulation, plant±model mismatches and disturbance±

rejection studies. They showed that these neural network

based controllers perform much better than the linear

methods in controlling the process over a wide range of

conditions.
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4. Neural networks in adaptive control techniques

4.1. General description

As with other techniques, neural networks can also be

adopted into the conventional adaptive control structures

in the control of nonlinear dynamic systems. These adaptive

methods are normally categorized into two approaches i.e.

direct adaptive and indirect adaptive schemes. In the direct

adaptive control scheme, there is no explicit attempt to

determine the model of the system; instead the controller

parameters are directly adjusted on-line to achieve the

necessary tracking and stability of the closed loop system.

In this scheme involving neural networks, the weights of the

neural network, acting as the controller, are adjusted on-line

to control the plant by minimizing some cost function invol-

ving the plant output and desired response. A possible

adjustment algorithm for the weights of the neural controller

can be based on gradient descent such as in the backpropa-

gation technique, which provides the necessary gradient of

the cost function with respect to the network parameters

[60]. In fact this approach is closely similar to the direct

inverse-model control method with the main difference

being that the controller is adjusted on-line using a model

reference signal in this approach.

In the indirect adaptive control scheme, a neural network

is used to identify an unknown part/function of a nonlinear

plant online (see Fig. 3). The objective of the control strat-

egy in this case is to make the plant output follow the refer-

ence output. The control action can be then computed from

the knowledge of the required output and that of

the nonlinear plant, made up of the known function of the

model and the neural network model emulating the

unknown part/function of this plant. Control action is

normally initiated once the plant is identi®ed to the desired

level of accuracy so that the output of the plant follows the

output of the stable reference model. In this way, both iden-

ti®cation and controls are performed simultaneously with

the time interval for updating the identi®cation and controls

chosen carefully to achieve stable results. Details of this

scheme can be found in the seminal paper of Narendra

and Parthasarathy [61]. Improvements to this basic

approach by adding a sliding control term to the neurocon-

troller have also been proposed by Sanner and Slotine [62],

to increase the region of operation.

4.2. Applications in chemical process systems

All the applications in this category utilized the feedfor-

ward multilayered neural network are summarized in Table

4. They are described in further details later. Ydstie [63]

utilized neural networks in direct adaptive and indirect

adaptive control type techniques for a CSTR with second

order reactions occurring between sodium thiosulphate and

hydrogen peroxide. Their control objective was achieved

successfully in making the temperature follow a predeter-

mined reference by controlling the reactant ¯ow rate. In the

direct adaptive method, the neural network with linear by-

pass was used as the controller. In the indirect adaptive

method, the control action was solved by numerical techni-

ques at each step and implemented as a one-step-ahead

predictive method. The network was trained by what they

called as the `error-broadcast' algorithm. Lightbody and

Irwin [64] used a neural network in parallel with a ®xed
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gain linear controller in a direct model-reference adaptive

control con®guration to control the product composition in a

CSTR system. Another neural network in parallel to the

nonlinear system is used to generate the plant jacobians

for updating the neural network controller online. They

showed that this method provided greatly improved perfor-

mances over the conventional PI controller under linear

model reference output tracking.

Boslovic and Narendra [65] applied both the conven-

tional multilayered neural network and radial basis function

networks in an adaptive control scheme, which updates the

unknown parameters online, for production of baker's yeast

in a fed-batch fermentation process. They considered the

set-point regulation of the system under no-noise and Gaus-

sian noise cases. They found that the conventional multi-

layered network gave superior performance over the RBF

and other nonlinear techniques such as the nonlinear adap-

tive and inverse dynamics controller. Chovan et al. [66]

used neural networks in a clustered scheme (combination

of clusters of neural network controllers and models) within

the indirect adaptive control method. They adopted real-

time learning with the controller trained by backpropagating

the error through the network model. They performed set-

point tracking for the control of level in a tank and the

control of cell mass yield in a bioreactor system with

successful results.

Loh et al. [67] used neural networks in conjunction with a

PID in a model reference adaptive strategy to control a

process pH. In this case the network consists of a cascade

of two single hidden layer nets: the ®rst being a recurrent

network to re¯ect the dynamic nature of the neutralizing

reactor and the second net is a static one to re¯ect the static

nature of the titration characteristic. Their results indicated

good set point tracking performance even under external

load disturbances. Yang and Linkens [68] developed an

adaptive online neural network-based controller where the

neural network controller is adapted online by error signals

from the neural network model emulating the plant. The

neural network is used to model the time varying properties

of the plant. This scheme is used to control a bioreactor with

time-varying characteristics and nonlinearity. They obtain

good results for set-point tracking, disturbance±rejection

and regulation under noisy signals but with extensive

computational time. Watanabe [69] also utilized an adaptive

control scheme where the neural network inverse models

acting as the controller were updated on-line in the special

inverse and error feedback learning method respectively.

These methods were applied successfully in a multiple-

input multiple-output (MIMO) continuous polymerization

reactor to control the number average molecular weight of

the polymer product and the temperature in the reactor

under set-point tracking conditions.

5. Online applications of neural network-based control
strategies

This section reviews all those application utilizing these

neural-network-based control strategies in online situations.

A summary of these online applications is given in Table 5.

The majority of these online application utilizes the multi-

layered feedforward network while a few others utilize the

recurrent and state feedback networks. We will discuss

them, beginning with those using the feedforward multi-

layered networks ®rst, in detail later.

Dirion et al. [70] used neural networks as direct inverse

controllers to control temperature in a bench-scale semi-

batch jacketed glass reactor equipped with a mono¯uid heat-

ing-cooling system. Simulations and experiments were done

for set point tracking of the temperature pro®le in this semi-

batch set up with reasonably good results. Khalid and

Omatu [71] used the neural network to learn the inverse

dynamics of a bench-scale heated water bath and then

con®gured it as a direct controller to control its temperature.

Studies on set-point tracking, disturbance±rejection and the

effect of dead time on the control action were done in this

work. Khalid et al. [72] used an adaptive neural network

controller, where the weights were adapted on-line, to

control the temperatures within a multiple-input multiple-

output (MIMO) bench-scale furnace. The weights were

adapted online by backpropagating the errors through a

forward neural network acting as the emulator. Studies for

set point tracking, disturbance rejection and the effects of

parameter changes were also done in this case. In both

applications they obtain better results than those obtained

using the conventional PI controller.
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Table 4

Summary Ð applications of neural networks in adaptive control strategies

Control technique Objective System NN type Robustness Ref.

Adap w/Inv Temp. CSTR(isothermal) Ml w/linear bypass Set pt. [63]

DMR w/online adapt Prod. Conc. CSTR Ml/Hyb. Tanh Set pt [64]

Adap Conc. Fermentation Ml/Sig. and RBF Set pt. [65]

Adap Level Tank Ml/Sig. Set pt. [66]

Adap Cell mass yield Bioreactor Ml/Sig. Set pt. [66]

Adap pH, Neut. Ml w/recurrent Dist [67]

Adap Cell Conc. Bioreactor Ml/Sig. Set pt. [68]

Adap MW Prod. and Temp. Poly. reactor Ml Set pt. [69]



VanCan et al. [73] utilized a neural network by numeri-

cally inverting the forward model and implementing it as a

predictive controller. This was implemented on a laboratory

pressure vessel to control the pressure by manipulating the

inlet air ¯ow rate. Experiments were done for set-point

tracking and comparisons were made with PI and linear

model-based controllers. They found that the response of

the neural network based controller was faster than the

conventional approaches especially at larger set point

changes. Evans et al. [74] developed a neural-network

model of a laboratory process i.e. two non-interacting

tanks in series, and incorporated it in a predictive control

strategy, where the network was used to predict future

process outputs up to a set horizon. Experiments for set

point tracking of the level in the second tank were

performed in this study. Their comparison with the conven-

tional PID controller show better performance, in terms of

sluggishness and control movements.

Langonet [75] utilized neural networks to copy the

dynamic behaviour of conventional controllers, tuned for

different operating conditions (corresponding to different

valve openings), for the control of the level in a tank by

manipulating the output ¯ow. The neural network was able

to control the system satisfactorily when switching from one

operating condition to another without any need for

retuning. Sheppard et al. [76] applied neural networks for

the control of temperature in a 175 kW experimental

furnace system. In this case the neural network model was

incorporated into an explicit generalized predictive control

scheme. They performed set point tracking of the tempera-

ture and the results obtained showed poor tracking at the

start of the experiment but excellent tracking towards the

end, even with the small possible amount of data gathered.

Baratti et al. [77] used neural networks to estimate the

distillate and bottoms composition of a gasoline stabilizer

tower in a re®nery plant. This was utilized for inferential

control of the isopentane composition in the column in

conjunction with a PI control system. They found that this

method outperformed the normal way of using the tempera-

ture for inferential control of the system. Wormsley and

Henry [78] used neural-network models within a model

predictive control scheme to control the distillate tempera-

ture in a laboratory-scale distillation apparatus separating

methanol and water. An exhaustive search method was

used for optimization and they obtained good set-point

and disturbance±rejection results in their study. Doherty

et al. [79] used an RBF-based neural network to model an

online pH process and used it within a model predictive

control scheme to control the pH of the outlet stream.

They used a transport lag volume array method to compen-

sate for the dead time in the tubular reactor. They employed

their scheme successfully to regulate the pH under various

disturbances and used a ®lter to improve robustness to noise

effects. Dubois et al. [80] used an adaptive IMC control

strategy, where the model was updated online, to control

the temperature in an oven system. However, they could
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Table 5

Summary Ð neural-network-based control methods in actual online applications

Control technique Cont. objective System NN type Robustness Ref.

D Inv. Temp. Semi-batch reactor Ml/Sig. Set pt. [70]

Pred. Level Two-tank-in-series Ml/Sig. Set pt. [74]

Adap. Temp. Bench-scale furnace Ml/Sig. Set pt. [72]

Em. FBC Level Tank system Ml Set pt. [75]

Pred Press. Pressure vessel Ml/Hyp Tanh Set pt. [73]

D Inv. Temp. Water bath Ml/Sig. Set pt./Dist. [71]

GPC Adap. Level Two-tank-in-series VQN networks Set pt. [91]

GPC Adap. Temp. Bench scale heated tank VQN networks Set pt./Dist. [92]

Infer. Prod. Comp. Stabilizer plant Ml/Sig. Set pt. [77]

Pred. Distillate Temp. Dis. column Ml/Sig. Set pt./Dist. [78]

Pred. Prod. maximisation Semi-batch reactor State feedback Set pt./Dist. [89]

Pred. pH Tubular Neut. reactor Ml/RBF Dist. [79]

IMC Adapt Temp. Oven system Ml/RBF Set pt. [80]

Inv. w/GMC Temp. Heater Ml/Hyp. Tanh Set pt. [81]

Pred. Temp. Packed bed reactor Recurrent/Sig. Dist. [88]

IMC pH Neut. Ml/RBF Dist. [82]

Adap. Flow Process control unit Ml/Hyp. Tanh Set pt./Dist. [83]

Pred. Prod. quality Poly. reactor Ml Optimal

time

[85]

Ext. DMC pH Neut. reactor Ml/Sig. Set pt./Dist. [84]

Pred. Temp. Furnace Ml set pt. [76]

IMC Temp Partially simulated

reactor

Ml/Sig. Set pt./Dist. [86]

Pred Melt ¯ow rate Poly. reactor Ml Set pt. [87]

Adap. pH Fermentor Recurrent Dist [90]

Inv. w/GMC Temp Heat exchanger Ml/Sig Set pt./Dist [100]



not get an accurate inverse model from training it with the

plant data and resorted to training the inverse model using

the data from the neural network model instead. An RBF-

based neural network model was used in this scheme to

control the oven to follow various desired temperature

trajectories satisfactorily.

Dutta and Rhinehart [81] used neural networks to model

the steady state inverse of a laboratory-based electrically-

heated feed preheater system. This was cascaded with a

GMC controller in a reference system synthesis approach

and used to control the feed temperature of the system. They

found the step point tracking results using this approach to

be better than the conventional PI and the model-based IMC

and MPC approaches. Seborg [82] used a neural network

with radial basis function activation to control the pH in a

two-tank neutralization system. An internal model control

structure was utilized with the controller designed to mini-

mize some performance criteria. The experiment was

performed to regulate the pH under disturbances in the

acid and buffer ¯ow rate. They found that the results gave

signi®cant improvements over the PI control action.

Noriega and Wang [83] used a direct adaptive neural

network to control the ¯ow rate of a bench scale ¯ow-

process control unit. The control signals in this experiment

was generated directly by the well established gradient

descent rule. The system was tested for set point changes

with ®xed and changing network learning rates and for

disturbance±rejection cases with successful results.

Draeger et al. [84] utilized a neural-network-based model

predictive control scheme to control pH in a laboratory-

scale neutralization reactor. They used the neural network

as the nonlinear prediction model in an extended DMC

algorithm to control the pH-value. The training data set

for the neural network was obtain from online measure-

ments of the inputs and outputs of the plant operating

under a PI controller. The results obtain for set-point track-

ing and disturbance±rejection cases showed better results

than with the conventional PI controller. Tsen et al. [85]

used a hybrid neural-network that integrates experimental

information and knowledge from a mathematical model for

control of quality in an experimental batch polymerization

reactor. The hybrid model is utilized for identifying the

unknown and unmeasured disturbances in the initial charge

of the batch reaction, which is formulated in a model predic-

tive control strategy. The strategy was applied on a real

experimental system to achieve the desired product conver-

sion in the least possible time.

Hussain et al. [86] utilized a neural-network-based IMC

strategy for controlling the temperature of a partially

simulated reactor in a pilot plant. They implemented the

strategy for set point tracking, disturbance rejection and

regulation under plant±model mismatches. The results

obtained were found to be comparable with the conventional

cascade method with, however, less ¯uctuations in the

control action demanded. Only recently a nonlinear predic-

tive control technique employing neural networks have been

implemented, through a software called Process Perfector,

in an industrial polypropylene plant. The model predictive

control technique utilize a neural network steady state

model and a dynamic process model with the dynamic opti-

mization program to perform the control calculations. The

objective of the installation was to control the melt ¯ow rate

in the polypropylene polymerization reactor. The managed

to get good set point tracking results, much better than the

traditional linear model predictive method [87].

Temeng et al. [88] used a recurrent network to model an

industrial multi-pass packed bed reactor which is then used

in conjunction with an optimizer to build a nonlinear model

predictive controller. The controller was then used to regu-

late the temperatures within the reactor under disturbance

rejection cases. The closed loop results they obtained indi-

cate that the neural network-based controller could achieve

tighter control than is possible with decentralized single

loop controllers. Schenker and Agarwal [89] used what

they called the state-feedback neural networks (i.e.

networks fed with states from the dynamic model) within

a predictive control scheme for product maximization in a

bench-scale semi-batch chemical reactor, where reactions

with complex kinetics occurs within it. They compared

this method with the feedforward-network method for

controlling the system under various operating conditions,

disturbances and model mismatches. They found that their

method demonstrate superiority over the conventional feed-

forward-network-based method. Recently, Syu and Chang

[90] utilized a recurrent backpropagation neural network for

online adaptive control of a penicillin acylase fermentation

process. In enhancing the effective online learning of the

network, moving data scheme was supplied to train the

network. The pH of the system was well controlled in

their experiments with maximum optical density achieved

under different types of disturbances.

Cooper et al. [91] utilized a vector quantizer network

(VQN) within an adaptive generalised predictive control

(GPC) strategy to correct for the initial underestimates of

the model gain and recognize controller error patterns to

restore desired controller performances after few adapta-

tions. This method basically takes advantage of the pattern

recognition capabilities of neural networks. The scheme was

carried out successfully for set-point tracking of level in a

two-tanks-in-series system in a laboratory experiment. This

methodology was also extended for parameter tuning of a PI

controller to control the temperature in a bench-scale heated

stirred tank system under set-point and disturbance rejection

cases with good results [92].

6. Concluding remarks

The review in this paper has highlighted the broad, exten-

sive and continuing increase in the application of neural

network in many chemical process control applications,

both online and in simulation. Other than showing the
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successful application of neural networks in these various

control strategies, they also reveal several other points such

as:

1. Neural networks are versatile in that they are capable of

being incorporated in various well-known nonlinear

control methods and strategies.

2. Multilayered feedforward with sigmoidal or hyperbolic

activation functions is still widely used in most of these

applications. This demonstrates their suf®ciency and

capability for performing systems identi®cation and

controls for wide range of problems, although there are

many other types of networks and activation functions

available currently.

3. Many online chemical process control applications have

been reported in the literature, but they are mostly for

miniature laboratory-scale equipments. Only a couple of

applications on pilot plants have been performed and a

few recent industrial applications, utilizing the predictive

method, have been reported but with few published

results. This opens the scope for more applications on

pilot plants and actual systems using these neural

network-based control strategies especially the inverse-

model-based schemes, which is the ultimate test of

robustness.
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