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ABSTRACT Inrecent years there has been a significant increase in the number of control system techniques
that are based on nonlinear concepts. One such method is the nonlinear inverse-model based control
strategy. This method is however highly dependent on the availability of the inverse of the system
model under control, which are normally difficult to obtain analytically for nonlinear systems. Since
neural networks have the ability to model many nonlinear systems including their inverses, their use in
this control scheme is highly promising. In this work, we investigate the use of these neural-network-based
inverse model control strategy to control an exothermic reactor. The use of the specialised method of
training the inverse neural network model is demonstrated. The utilization of two different inverse-model
schemes namely the direct inverse control and the internal-model control methods are shown for both
set point and disturbance rejection cases. The overall results for set point tracking are good in both
control strategies but the direct inverse control method had limitations when dealing with disturbances.
Other important aspects relating to the use of neural networks for identification and controls are also
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discussed in this paper.
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INTRODUCTION

Although the use of linear control methods have
been prevalent in the chemical process industries,
they have their limitations especially when dealing
with nonlinear plants in a wide operating region as
commonly found in these industries. Many
economically important operations, such as reactors
and high-purity distillation columns, can be very
nonlinear and very difficult to control adequately
with linear controllers. In fact chemical reactors
create some of the most challenging feedback control
problems faced by chemical process control
engineers. Complex steady state and dynamic
behaviour, such as ignition/extinction behaviour and
parametric sensitivity create challenges that are
tough for traditional linear controllers to handle.
However progress in nonlinear control theory,
combined with computer hardware advances, now
allow advanced, nonlinear control strategies to be
successfully implemented on chemical processes
Bequette BW(1991). One such technique is the
nonlinear based inverse-model control strategy. The
ease and speed of applying this method relative to
other possible methods (such as the predictive
schemes) for many applications is clearly evident.

However this method relies heavily on the
availability of the inverse of the system’s model,
which acts as the controller in this scheme.
Unfortunately the inverse of a system may be difficult
to obtain analytically for many nonlinear systems,
which is one of the reason why its use is not presently
widespread in the control of process systems.

However since neural networks have the potential
to model any system, the use of neural network for
modelling these inverses and hence utilised them in
these inverse-model-based strategies is highly
promising. These connectionist models also have the
ability to learn the frequently complex dynamic
behaviour of a physical system. In fact many researches
e.g. Cybenko G (1989), Hornik K, Stinchcombe M.
and White H (1989) have recently proven that any
continuous functions can be approximated to an
arbitrary degree of exactness on a compact set by a
feedforward neural network comprising two hidden
layers and a fixed, continuous non-linearity. In
general some of the reasons for the recent upsurge
in the use of neural networks in chemical engineer-
ing are as follows:

1. The tremendous hardware advances in digital
technology over the past decade have enabled
simulations of neural nets to be made both
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economically and with relative ease and speed.
Although neural networks are parallel devices, the
majority of their simulations at present are being
simulated sequentially on serial computers. However,
neural networks can be more efficiently used as parallel
computing technology becomes more readily available.

2. Application of neural network for sensor pattern
classification have been found to be superior to the
traditional techniques or the expert system approaches.

3. Neural networks offer the promise of being
able to extract information from plant in an efficient
manner with normal availability of rich data. In some
cases, it may not be cost effective to develop models
from first principles at all times especially those
dealing with severe/unknown on-linearity’s. Neural
networks offer a simpler and efficient alternative.

4. Some practitioners contend that neural
networks may be easier to use and apply in the real
plant, with difficult to handle nonlinearities, as
compared to the modelling approach which can be
subjected to various modelling errors.

5. Finally the versatility in structure and applica-
tion of neural networks enables them to be utilised
in the middle ground between conventional model-
based approaches and black box approaches for
solving many classes of problems and they can also
be easily accommodated in various conventional
model based control strategies such as the inverse,
adaptive and predictive control methods.

These factors motivates us to study the use of
these inverse-model neural-network-based controllers
on a complex nonlinear system such as the two-state
variables continuous stirred tank exothermic reactor.
This article describes the use of such controllers for
the control of a reactor exhibiting strong parametric
sensitivity. Two control schemes based on the inverse
models are utilised. Before utilising them in these
schemes various important features on the forward
and inverse models are discussed. The usual approach
for identification of plant dynamics is followed,
where it is assumed that the output of the plant can
be reconstructed from a finite number of past inputs
and outputs. The control simulation studies involve
set point tracking and disturbance rejection cases,
where the concentration (dimensionless) is controlled
using the coolant temperature (dimensionless) as the
manipulated variable.

Case Stupy
Continuous Stirred Tank Reactor

The nonlinear chemical process studied in this
work is the exothermic stirred tank reactor system
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with first order reactions. The reactor is assumed to
be perfectly mixed and no heat loss occurs within
the system Limqueco LC and Kantor JC (1990).
Other assumptions made in formulating the model
include: All model parameters and physical
properties are constant at nominal operation, all
temperatures and concentration values are
measurable either directly or indirectly, the
temperature of cooling water can be directly
manipulated without delay i.e the cooling water
jacket dynamics can be neglected and the feed
concentration is assumed to be a known constant in
this case.

The irreversible, first order reaction in the system
takes the form

ko

A-B

The model of the CSTR and its reaction system in
continuous time is given by:

i—f = kG +3(c ~c) )
T MM, E A
d% = p—cljkoCe RT+%(T[—T)+%(T(-T) 2)

where C and T are reactants concentration and
reactor temperature respectively. The feed con-
centration C; is assumed to be constant and known.
The model can be made dimensionless by introduc-
ing the parameters:

B = ﬂv (3)
pC, T
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where Qg and T, are the known nominal values of
the volumetric flowrate and feed temperatures
respectively. The meanings of the other variables and
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parameters can be found in the nomenclature. The
corresponding dimensionless variables are defined by:

T = &t (8)
\Y%

u = y—a(Tc—T.o) ©)
fo

_Yq (e
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The resulting reduced dimensionless model is then
given by:

dx,

e = —(px,K(Xz)+q(1—x|) (13)
dd% = B(PXlK(Xz)_(C{+6)X2+U+V(14>

| H|
where K(X,) is given by exp ﬁ% Here x, (or
+X, y

output, y) is the dimensionless concentration, x, is
the dimensionless reactor temperature, u (the control
variable) is the dimensionless temperature of the
cooling medium and v is the dimensionless feed
temperature (disturbance).

The parameters chosen in this case study can be
seen in Table 1. In this case study, the initial feed
temperature, T, and the nominal feed temperature,
T,, are both equal at 300 K. The system has been
shown to exhibit strong parametric sensitivity for
these range of parameters and conditions where a
dramatic change in the outlet temperature and
concentration can be caused by a small disturbance
in feed temperature. This can be clearly seen from
the steady state operating plot for the CSTR in
dimensional form i.e. plots of the steady state rate
of heat generation, QRrel and removal, QRrem versus

Table 1: Parameter values for case study

Dimensionless activation energy Y 20
Damkohler number (0] 0.11
Dimensionless heat of reaction B 7

Dimensionless heat transfer coefficient 0 0.5

Dimensionless volumetic flowrate q 1
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the reactor temperature. The intersection of these
two plots points to the steady state condition of the
reactor (steady state reactor temperature), assuming
constant cooling water temperature. As seen in
Figure 1 an increase in feed temperature of 5 K, from
the nominal temperature of 300 K, dramatically
changes the steady state point to a new one (changes
in both the dimensionless concentration and
temperature under open-loop).

NEeuraL NETWORKS IN INVERSE-MODEL
CONTROL STRATEGES

Neural networks can be incorporated in the
inverse-model control scheme in two different ways
i.e. direct inverse control and the inverse model
control methods. The direct inverse control strategy
utilises these neural networks in a simple form. In
this case the neural network acting as the controller,
has to learn to supply at its output, the appropriate
control parameters, u for the desired targets, ysp at
its input. The network inverse model (the training
or identification of which will be explained in later
sections) is then utilised in the control strategy by
simply cascading it with the controlled system or
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Fig 2. Neural network in direct inverse control strategy.
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plant as seen in Figure 2. In this control scheme the
desired set point, ysp acts as the desired output which
is fed to the network together with the past plant
inputs and outputs to predict the desired current
plant input Pao YH Phillips SM and Sobajic DJ
(1992). This method depends heavily on the accuracy
of the inverse model mapping and is commonly
used in applications such as robotics Kawato M,
Furukama K and Suzuki S (1987), Yamada T and
Yabuta T (1990).

The other strategy is that of the nonlinear internal
model control technique, which is basically an
extension of the linear IMC method Hornik K,
Stinchcombe M. and White H (1989). In this method
both the forward and inverse models are used directly
as elements within the feedback loop. The IMC
approach is similar to the direct inverse approach
above except for two additions. First is the addition
of the forward model placed in parallel with the
plant, to cater for plant or model mismatches and
second is that the error between the plant output
and the neural net forward model is subtracted from
the set point before being fed into the inverse model.
The other inputs to the inverse model is similar to
the direct method. Furthermore in this case the
forward model is fed with the input to the plant (i.e.
output of inverse model) as well as the past inputs
and past outputs of the plant. The forward model
can also be fed with its past outputs instead of the
plant outputs, especially in cases of noisy plant
output data (as seen from the dotted line of Figure
3). Afilter, F can be introduced prior to the controller
in this approach to incorporate robustness in the
feedback system, especially where it is difficult to
get exact inverse models. The IMC strategy however
has a few drawbacks such as not being able to handle
unstable processes and nonminimum phase systems.

An alternative method used by researchers to
compute the control signals Psichogios DM and
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Fig 3. Neural network in internal model control strategy.
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Ungar LH (1991), Nahas EP, Henson MA and Seborg
DE (1992) is to numerically invert the neural network
forward model at each interval by Newton’s method
or substitution methods based on the contraction
mapping theorem. The first derivative with respect
to the control input can be computed in these
techniques by the usual backpropagation method.
These numerical techniques are time-consuming,
very sensitive to the initial estimates and they may
not necessarily give the global and unique solution.
They are also computationally intensive as compared
to using the neural network inverse model directly,
as in our work here.

Neural network models

Before applying these inverse-model neural
network control strategies on the stirred tank reactor,
we will initially discuss the development and
configuration of the forward and inverse models,
fundamental to these model-based control strategies.

Forward models

The procedure of training a neural net to represent
the forward dynamics of a system (i.e. Obtain outputs
given the inputs) is referred to as forward modelling
and the models obtained from this procedure are
called the...forward models. The most popular and
straightforward approach is to augment the network
inputs with corresponding discrete-time past inputs
and past output data signals in real number form,
from the model or system being identified as seen in
Figure 4. Other fundamental state variables such as
the reactor temperature in this case study can also
be fed into the network and considered as part of
the inputs. In this procedure, the network is fed with
the present input, past inputs as well as the past
outputs to predict the necessary output. The neural
network is placed in parallel with the model or
system and the error between the system output and

u(® Model/ y(t) (@nd y(t+k))
System
+C e
=
N I Net ~ ~
e I (and §(+k)
Network
Mod
—{z 1} oce N training
7= r signal

Fig 4. Forward dynamic modelling with neural networks.
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network output (i.e. prediction error) is used as the
training signal for the neural network. Various
important steps to be followed for performing this
identification includes: proper selection of model
structure and size, selection of data set, selection of
suitable input excitation signal, adequate weight
initialization, proper training method and model
validation.

We could also have used both of the state variable
as the outputs but we would like to avoid the com-
plexity of dealing with multivariable, multi-output
networks in this study especially when it comes to
training and validation. Since this system is also
second order,both in model (linearized) and relative
order, and with the assumption that the structure of
the network inputs and output are the same as that
of the plant, the output of the network is then the
one-step ahead prediction of the dimensionless
concentration while the inputs consists of the present
and one past values of dimensionless concentration,
dimensionless temperature and control respectively
(see Figure 5). Experimentation on various other
input configurations reveals that this configuration
is adequate to achieve the dual objective of utilising
parsimonious models as well as for control
purposes.The final forward model representation is
given as:

C(k-1) ck) C(k+1)
T(k-1) T(k)
u(k-1) u(k)

|:| Input data
|:| Output data

T = reactor temperature
C =reactor concentration

u = control input
(cooling medium temperature)

Fig 5. Input and output data node assignment for the CSTR
forward models.
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ym(k+1)

f[yp(k),yp(k—1),xz(k),xz(k-l),u(k),u(k—l)]
(15)

where f represents the nonlinear neural network
input/output map, output y, represents the di-
mensionless concentration, state x, represents the
dimensionless temperature and input u the control
action (i.e. dimensionless cooling water temperature).
We also assume here that there is no time delay
between input and output, as formulated in the
model equations. The input signals used to train and
test the network consist of pseudorandom multistep
signals i.e. One with random amplitude in the range
-1.5 to 1.5 (dimensionless values) with random
frequency and the other with random amplitude in
the range-1.0 to 1.5 but constant frequency. The data
is sampled at every 1 dimensionless time interval,
which applies for both the forward and inverse
models. The dimensionless temperature and input
variable, u are scaled to between O and 1 for utilization
in the network. The values for the dimensionless
concentration are in the range O to 1 and are no
need to be scaled. A total of 100 data were corrected
for each of the training and test data set generated.
In this case study, training was switched between
the train and the first test data set. The training was
performed initially in the normal way on the training
set until a reasonable rms error was achieved. Then
training was repeated using the 1% test data set
instead until the rms error decreased again to another
reasonable minimum. The training was then
switched back using the first training data set to
check if the error was still reasonable and decreasing.
If it is not then the whole procedure is repeated again
either withdifferent initial weights or different
number of hidden nodes in the hidden layer. Once a
reasonable and continually decreasing rms error was
achieved for both sets of data, the training was
stopped and the network topology and configuration
taken to be the optimum required. If the error was
increasing for any of the data set then it was well
known that the network At was not generalising over
the data set but performing a pointwise data-to-data
fitting which means that the network is over-
parameterised. On completion of training the
network is validated by applying it on the validation
data, which is generated by a mixture of ramp input
signals and steady state values in the range -1 to 2.
These input excitation signals (scaled) for training
and testing are similar to that used for inverse
modelling which is described in the next section.
The final network configuration chosen to
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represent the forward model is a 6 input-node, 20
hidden-node and 1 output-node network.

Inverse models

Inverse models are basically the neural net
structure representing the inverse of the system
dynamics at the completion of training. The training
procedure in this case is called inverse modelling.
In the incorporation of all inverse models in the
control strategies later, y(k + 1) corresponds to the
required set point or reference signal. The final
network representation of the inverse is given as:

o) = f“[yp(k+l),yp(k),yp(k-l),xz(k),xz(k—l),u(k),u(k—l)]
(16)

where [~ represents the inverse map of the forward
model.

The prediction of the control input, u(k) is
performed for a one-step ahead prediction, in
conformity with that of the forward model and the
application of a one-step ahead control action in the
control strategies to be shown later. The training,
test and validation data set generated for the
networks are similar to that used for forward
modelling but with the input and output con-
figuration as of Figure 6. Training is performed by
switching between the train and test data as for the

C(k-1) C(k) C(k+1)
T(k-1) T(k)
u(k-1) u(k)

|:| Input data T = reactor temperature

C =reactor concentration

|:| Output data u = control input

(cooling medium temperature)

Fig 6. Input and output data node assignment for the CSTR
inverse model.
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forward model. The control inputs (dimensionless
cooling water temperature) and the u state variable
(dimensionless reactor temperature) are also scaled
in the region 0 to 1.

The inverse model is obtained from an approach
known as the specialized method. In this approach
(see Figure 7) the network inverse model precedes
the system and receives as input the system reference
or command signal i.e. set points, together with the
past system output and past inputs. The error signal
used to train the network is the difference between
the reference signal and the system output. In
comparison with other methods this approach is goal
directed i€ the system receives inputs during training
corresponding to operational inputs it expects to
encounter in practice and in cases where the forward
mapping is not one-to-one, a particular useful inverse
can still be found Hunt KJ and Sbarbaro D (1992).

It is also closed loop in structure and relevant
for application in the neural network inverse model
based closed loop control strategies, as shown here.

In utilising the specialized inverse learning
method, the plant or model is situated between
the’ neural network and the training error signal.
Hence it is necessary to propagate this error through
the plant and feedback to the output of the neural
network to provide a suitable descent direction for
the backpropagation algorithm, which results in an
increase in the training period when using this
method. Psaltis and Sideris Psaltis D, Sideris A and
Yamamura A (1988) introduced a concept of using
the plant Jacobian or sensitivity derivative to achieve
this and considered the plant as an additional but
unmodifiable layer of the inversemodel neural
network. In this case the output error, E to be minimised
is given in general by

_ 1 _od)?
E = Eg(yq Yq) (17)
and

OE .

ot - —yd (18)
3y, (Yq Yq)

%]
E
r ,\r‘\l;wz\rl/k:_l agk) IW Y(k+1)

Fig 7. Specialised method of training inverse model.
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wherey, is the output of the plant, y§ the desired
output of the plant and q is the number of outputs.
From the backpropagation algorithm Rumelhart
DE and McClelland JL (1986), the needed derivative
to manipulate the weights at the output layer is

a—Ewhere O, the actual output from the neural
k

network i.e. input or control signal, n. However since

OE

E is not in terms of O, we can evaluate by the
k
product of two terms i.e
OE  _ _OE Oy, (19)
00, q 6Yq 00,
But from Equation 18 above, we get
OF 1) &
— = - (20)
30, g(y“ y“)éok

and hence the output layer error signal is propagated
back from the output layer to the hidden layer in
proportion to 8, which is given by

o = f(netk)g(yq—yﬁ)aaéi ©2))

However since it is difficult to obtain an explicit

By,

k
in this case study (and in many other cases as well);
we have used the sign of the Jacobian instead of its
real value as suggested by Saerens and Soquet Saerens
M and Soquet A (1990). It should be noted that the
product between the gradient produced by the exact
method and that produced by this approximation is
always positive and will hence ensure error mini-
mization, although at the expense of longer training
time.

The final model configuration for the inverse
models is a 6 input-node, 20 hidden-node and 1
output-node network.

analytical expression for the plant Jacobian,
y P P

Control Implementation

This section demonstrates the application of the
direct inverse control and IMC strategies on the
CSTR system for both set point tracking and dis-
turbance rejection studies. For this second order
system being considered, the control manipulated
input, u represents the jacket cooling water dimen-
sionless temperature while the controlled output, y
represents the reactor dimensionless concentration.
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In all these strategies the one-step ahead prediction
and implementation is used for both the forward and
inverse models respectively and in accordance with
the way of training these forward and inverse models.
The control sampling time is chosen to be equivalent
to the data acquisition sampling time of 1 dimen-
sionless time interval i.e. synchronized data sampling
and control implementation time. Hence each time
step shown in the plots for this case study represents
this period of time in implementation.

Set Point Tracking - Inverse Model from Specialised
Training

Direct Inverse Control Strategy

The neural network inverse model obtained from
this training method was implemented in the direct
inverse control strategy. The results for set point
tracking (increase and decrease from the nominal
steady state value of 0.75 for y) can be seen in Figure
8. The controlled system could follow the set point
trajectory very well overall with minimal offsets at
all points, as summarised in Table 2.
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Fig 8. Direct inverse control strategy, specialed training - set point
tracking.

Table 2. Specialised training results - CSTR system.

Direction inverse control IMC with yp as inputs

st pt yplant St pt yplant

0.7500 0.7498 0.7500 0.7474
0.2000 0.2031 0.2000 0.2077
0.6000 0.6041 0.6000 0.6026
0.9000 0.09055 0.9000 0.9040
0.3000 0.3094 0.3000 0.3114
0.7500 0.7498 0.7500 0.7474
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Internal Model Control Strategy

The inverse neural network model, from the
specialized training method, and the existing forward
neural network model were then incorporated in
the IMC strategy for this case. The results as seen in
Figure 9 again show good set point tracking with
minimal offsets, comparable to the direct inverse
control method (see Table 2). Some oscillatory
behaviour of the control at the step change can be
seen in both cases, which is not surprising since we
are implementing the one-step ahead action without
filtering in these control schemes.

Disturbance Rejection

This represents a case for disturbance rejection
in both control strategies. As shown before in the
previous sections, the CSTR system exhibits strong
parametric sensitivity in the sense that a small feed
temperature disturbance can cause a dramatic change
in outlet temperature and concentration. The
objective of our simulation in this section is to utilise
these control strategies to keep the dimensionless
concentration at its nominal steady state value even
when the system would be forced open-loop into
another steady state dimensionless concentration
due to the disturbance in feed temperature. In this
scheme for both control methods, the system output
is initially controlled at its nominal dimensionless
steady state value, of 0.75, until the 50th time step.
At this point the disturbance consisting of an increase
in the feed temperature from 300 K(27 C) to 305 K
(32 C) is introduced. The controller is kept to its
initial value ( kept inactive) until the 120~ time step
before being; turned on again. During this open-loop
period the dimensionless concentration decreased
to a new steady state value.
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Fig 9. IMC strategy, specialised training set point tracking.
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In the direct inverse control approach, no change
in control action was produced to offset this
disturbance and the system could not be brought
back to its original set point value as seen in Figure
10. In the IMC approach the control action
immediately reacted when initiated at the 120" time
step and brought the system back to its nominal set
point value within 10™ time steps, as seen in Figure
11. This shows the ability of the IMC method to
reject disturbances in the presence of the error (and
plant/model mismatch) feedback mechanism which
does not exist in the direct inverse control method.

SuMMARY AND DiscussioNs

The overall results showed the capability of
employing these inverse-model-based neural
network control strategies to control a nonlinear
system such as the exothermic reactor used in this
case study. The work also deal with the various ways
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Fig 10. Direct inverse control-disturbance rejection.
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Fig 11. IMC strategy - disturbance rejection.
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of employing these neural network models in these
inverse-model based control schemes. However
many other important and valuable observations
have been obtained from this study and they are
discussed below.

Firstly, the importance of choosing the right
magnitude and range of input excitation signals,
which suits its intended application, when training
the inverse models is clearly seen. This was taken
into account when training the neural networks by
switching the training between the train and test data
set, hence covering a higher magnitude range with
varying frequency. The other important consideration
when choosing the right sort of training data, is to
incorporate steady state as well as transient data in
the training data set for the neural networks. This
means that the input excitation signal has to be of
sufficient duration and frequency to be able to
produce both transient as well as steady state
conditions. This is the reason that ramp only data
signals are not suitable for training the inverse
models and are only utilised for validation purposes.
Due to the significant nonlinearity of the systems
(especially the CSTR system), the use of transient
data only may not give any unique one-to-one
relationship between outputs and inputs which may
result in an unstable system when applied in these
control strategies. This could be the main reason why
some researches experienced instability when
implementing the directly trained neural network
inverse model in this IMC approach Psichogios DM
and Ungar LH (1991) .In fact many researches have
incorporated neural network controllers in the IMC
approach by solving for the control inputs, through
numerical inversion of the forward neural network
models, using techniques such as Newton’s method.
Although these numerical methods produce
offset-free results Nahas EP, Henson MA and Seborg
DE (1992), they are very computer intensive and
time consuming and defeat the purpose and
advantages of using these inverse-model-based
methods over the predictive control methods.

As stated in the theory for IMC formulation
Economou C Morari M and Palsson B.0 (1986),
offset-free controlled systems is only ensured when
the controller is an exact inverse of the forward
model. However this is difficult to achieve in this
method shown in our simulation studies, since there
is no guarantee that the inverse model obtained is
able to invert the steady state gain of the system
perfectly. However if the training is performed
properly and adequately as in our work here, the
offset obtained is minimal and is sufficient for most
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process systems control application. Furthermore its
implementation is fast and amenable for online
application. The offset-free method of utilising
numerical techniques to solve the neural network
inverse controller would be too cumbersome and
too slow to be able to implement it practically.

Another observation made in this study is that
in all the cases for set point tracking, the performance
of the direct inverse control and the IMC method
are similar with very little difference in the steady
state offsets. This is clearly due to the small difference
between the plant and the neural forward model.
Since the inverse models are identical in
bothmethods, this small difference makes these two
strategies similar in implementation and hence both
methods give closely similar results. This small
difference between plant and network forward model
also enables the network output to be fed back to
the forward and inverse models instead of the plant
outputs in a recurrent network fashion. This
approach would be extremely useful when applying
this control strategy in actual systems with noisy
measurements which allows the neural networks to
be working with noise-free input signals and hence
produce more reliable performance.

However the superiority of the IMC over the
direct inverse control method becomes evident in
the disturbance rejection case. In both case studies,
the IMC approach was able to reject the disturbance,
in the form of a change in the feed conditions,
precisely and keep the system at its set point value
while the direct inverse control method could not
act on these disturbances and suppress them. This
clearly demonstrates the importance of feeding back
plant measurements as well as the plant - model error
signal to the controller to handle such situations.
Since most process systems experience such
disturbances in their day-to-day operation, we can
conclude that the IMC approach would be the more
suitable method for the control of all practical
process systems applications.

Finally an important point to note is that the
successful implementation of the IMC approach
relies heavily on the simultaneous accuracy of the
forward and inverse models. However since this is
not easily achieved for many non linear systems, a
filter is added prior to the controller to compensate
for this inaccuracies and sustain robustness in the
control implementation. However as shown in our
simulation studies here, the inverse neural network
models obtained for both case studies are a fairly
good representation of the inverses of the forward
models, in which case no filtering action was
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necessary (filter tuning constant set to zero). However
large spikes and oscillations in the control inputs
could be clearly observed at every instance of set
point changes in the set point tracking studies using
both control strategies in this case study. This could
be primarily attributed to the use of the one-step
control implementation without filtering, which
normally demands this drastic changes in control
inputs and results in the momentarily rapid oscilla-
tions observed. Although this requirement brings
about a fast set point tracking response, this highly
oscillatory behaviour in control action, which can
easily exceed its hard limits, is not desirable for real
time hardware implementation. The effect of using
filters will be followed up later in our future work.

NOMENCLATURE

Component “A”

Heat transfer area (m?)

Component “B”

Reactor concentration (mol/m%)
Specific Heat Capacity (J/(kg.K))

Feed Concentration of reactor (mol/m?)
Activation energy (J/mol)

.

-

Nonlinear neural network input/output map
Heat of Reaction (J/mol)

Arrhenius pre-exponential constant (min™)
Volumetric flowrate (m3/min)

Nominal volumetric flowrate (m®min)
Heat released within reactor (kcal/min)
Universal gas constant (J/(mol.K))
Time

Reactor temperature(K)

Tf Temperature of feed (K)

Tc  Coolant temperature (K)

u  Dimensionless process input

v Dimensionless disturbance

u(k) Input variable / control input

U. Heat Transfer coefficient (J/(s.m?.K)

V. Volume of reactor (m?)

x, Dimensionless reactant concentration
X, Dimensionless reactant temperature
y,yp Outputlplant variable
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y (k) Neural network output
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Subscripts
f feed condition
0 initial condition or nominal condition

Greek symbols

Reactant density (kg/m?)
Dimensionless heat of reaction
Dimensionless heat transfer coefficient
Dimensionless activation energy
Damkohler number

Dimensionless time

< OO™O

REFERENCES

1. Bequette BW(1991) Nonlinear control of chemical processes:
A review. In: Ind EngChem, pp 1391-1413.

2. Cybenko G (1989) Approximation by superposition of a
sigmoidal function, Math. In: Control Signals System 2" ed,
PP 303-314.

3. Economou C Morari M and Palsson B 0 (1986) Internal model
control. Extension to nonlinear systems. Ind Eng Chem Process
Des Dev 25, pp 403-411.

4. Hornik K, Stinchcombe M and White H (1989) Multilayer
feedforward networks are universal approximators. In: Neural
Networks, 2™ ed, PP 359.

5. Hunt KJ and Sbarbaro D (1992) IKE Control Engineering
Series, London.

6. Kawato M, Furukama K and Suzuki S (1987) A hierarchical
neural- network model for control and.learning of voluntary
movement. In: Biological Cybernetics 57, pp 169-185.

7. Limqueco LC and Kantor JC (1990) Nonlinear output
feedback control of an exothermic reactor. In: Computers Chem
Eng, vol 14(5), pp 427-437.

8. Nahas EP, Henson MA and Seborg DE (1992) Nonlinear
internal model control strategy for neural network models.
Computers Chem Eng 16, 1039-57.

9. Pao YH Phillips SM and Sobajic DJ (1992) Neural net
computing and the intelligent control of systems. IntJ Control
56, 263-89.

10. Psaltis D, Sideris A and Yamamura A (1988) A multilayered
neural network controller IEEE control systems magazine 8,
17-21.

11.Psichogios DM and Ungar LH (1991) Direct and indirect
model based control using artificial neural-networks. In: Ind
Eng Chem Res 30, 2564-2573.

12.Rumelhart DE and McClelland JL (1986) Explorations in the
microstructure of cognition. Parallel Distributed processing
Chapter 8, MIT PressCambridge, U.S.A.

13.Saerens M and Soquet A (1990) A neural controller. In: Proc
Ist IKE Conf: on neural networks, pp 211-215.

14.Yamada T and Yabuta T (1990) An extension of neural network
direct controller In: IEEE Int. Workshop on intelligent robots
and systems, pp 619-626. Japan.



