9253 measured reflections

 $R_{\rm int} = 0.008$

7210 independent reflections 6583 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Octa-*n*-butyl-1 κ^2 C,2 κ^2 C,3 κ^2 C,4 κ^2 Ctetrakis(u-2-hydroxybenzoato)- $1:2\kappa^2 O:O;2:3\kappa^2 O:O';3:4\kappa^2 O:O;$ $1:4\kappa^2 O:O'-di-\mu_3-oxido-1:2:3\kappa^3 O:O:O;-$ 1:3:4 κ^3 O:O:O-tetratin(IV)

Reza Reisi, Shahirin Siti Munirah, Misni Misran, Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 22 July 2008; accepted 28 July 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.018; wR factor = 0.068; data-to-parameter ratio = 20.5.

In the centrosymmetric tetranuclear title compound, $[Sn_4(C_4H_9)_8(C_7H_5O_3)_4O_2]$, one of the two independent Sn atoms is five-coordinate in a *cis*-C₂SnO₃ trigonal-bipyramidal geometry $[C-Sn-C = 142.7 (1)^{\circ}]$; the geometry is distorted owing to a long $Sn \cdots O(double bond)$ interaction $[Sn \cdots O =$ 2.862 (1) Å]. The other Sn atom has a bent R_2 Sn skeleton [C- $Sn-C = 144.0(1)^{\circ}$, but the geometry is best regarded as being a *trans*- C_2SnO_4 octahedron as the Sn–O(single bond) interaction is shorter [Sn-O = 2.674 (1) Å].

Related literature

For a review of the structural chemistry of organotin carboxylates, see: Tiekink (1991, 1994). For a description of carboxylato-distannoxanes, see: Ng et al. (1991).

Experimental

Crystal data

$[Sn_4(C_4H_9)_8(C_7H_5O_3)_4O_2]$	$\gamma = 115.204 \ (1)^{\circ}$
$M_r = 1512.10$	V = 1597.18 (5) Å ³
Triclinic, P1	Z = 1
a = 11.4549 (2) Å	Mo $K\alpha$ radiation
b = 12.1610 (2) Å	$\mu = 1.60 \text{ mm}^{-1}$
c = 13.4436 (2) Å	T = 100 (2) K
$\alpha = 106.300 \ (1)^{\circ}$	$0.38 \times 0.30 \times 0.18 \text{ mm}$
$\beta = 92.532 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.581, \ T_{\max} = 0.761$

Refinement

ł

ν S

7

$R[F^2 > 2\sigma(F^2)] = 0.018$	352 parameters
$VR(F^2) = 0.067$	H-atom parameters constrained
1 = 1.17	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
210 reflections	$\Delta \rho_{\rm min} = -0.86 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3−H3···O2	0.84	2.02	2.638 (2)	130
O6−H6···O5	0.84	1.91	2.548 (2)	132

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the University of Malaya for funding this study (SF022/2007 A, FS339/2008 A) and also for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2287).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ng, S. W., Chen, W. & Kumar Das, V. G. (1991). J. Organomet. Chem. 412, 39-45.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.

Tiekink, E. R. T. (1994). Trends Organomet. Chem. 1, 71-116.

Westrip, S. P. (2008). publCIF. In preparation.

Acta Cryst. (2008). E64, m1103 [doi:10.1107/S1600536808023787]

Octa-*n*-butyl- $1\kappa^2 C$, $2\kappa^2 C$, $3\kappa^2 C$, $4\kappa^2 C$ -tetrakis(μ -2-hydroxybenzoato)-1: $2\kappa^2 O$:O;2: $3\kappa^2 O$:O;3: $4\kappa^2 O$:O;1: $4\kappa^2 O$:O'-di- μ_3 -oxido-1:2: $3\kappa^3 O$:O:O;1:3: $4\kappa^3 O$:O:O-tetratin(IV)

R. Reisi, S. Siti Munirah, M. Misran, K. M. Lo and S. W. Ng

Comment

Diorganotin dicarboxylates are conveniently synthesized by condensing a diorganotin oxide with a carboxylic acid; occasionally, only one molar portion of the acid is used up to afford a tetranuclear distannoxane. The strucutural chemistry of distannoxanes has been reviewed (Ng *et al.*, 1991; Tiekink, 1991; 1994). The title compound (Scheme I, Fig. 1) is formed in a 1:2 condensation between di-*n*-butyltin oxide and 2-hydroxybenzoic acid. The hydroxyl-H atoms form intramolecular hydrogen bonds to the more weakly bound O atoms (Table 1).

Experimental

Dibutyltin oxide (2 g, 8 mmol) and salicylic acid (2.2 g, 16 mmol) were acid heated in ethanol (100 ml) until the reactants dissolved completely. Slow evaporation of the filtered solution yielded colorless crystals.

Refinement

Carbon-bound H-atoms were placed in positions (C–H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to $1.2-1.5U_{eq}(C)$. The hydroxy H-atoms were similarly constrained (O–H 0.84 Å) but the hybridization of the oxygen atoms was assumed to be sp^2 .

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of $[Sn_2(C_4H_9)_4(C_7H_5O_3)_2O]_2$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are related by a center of inversion.

Octa-*n*-butyl- $\ 1\kappa^2 C, 2\kappa^2 C, 3\kappa^2 C, 4\kappa^2 C$ - tetrakis(- μ -2-hydroxybenzoato)-1: $2\kappa^2 O:O; 2:3\kappa^2 O:O; 3:4\kappa^2 O:O; 1:4\kappa^2 O:O'$ -di- μ_3 -oxido-1: $2:3\kappa^3 O:O:O; 1:3:4k^3 O:O:O$ -tetratin(IV)

Crystal data	
$[Sn_4(C_4H_9)_8(C_7H_5O_3)_4O_2]$	Z = 1
$M_r = 1512.10$	$F_{000} = 764$

Triclinic, <i>P</i> T	$D_{\rm x} = 1.572 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 11.4549 (2) Å	Cell parameters from 8563 reflections
b = 12.1610 (2) Å	$\theta = 2.1 - 30.4^{\circ}$
c = 13.4436 (2) Å	$\mu = 1.61 \text{ mm}^{-1}$
$\alpha = 106.300 (1)^{\circ}$	T = 100 (2) K
$\beta = 92.532 (1)^{\circ}$	Block, colorless
$\gamma = 115.204 \ (1)^{\circ}$	$0.38\times0.30\times0.18~mm$
V = 1597.18 (5) Å ³	

Data collection

Bruker SMART APEX diffractometer	7210 independent reflections
Radiation source: fine-focus sealed tube	6583 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.008$
T = 100(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 14$
$T_{\min} = 0.581, T_{\max} = 0.761$	$k = -15 \rightarrow 15$
9253 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.018$	H-atom parameters constrained
$wR(F^2) = 0.067$	$w = 1/[\sigma^2(F_0^2) + (0.0396P)^2 + 0.6175P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.17	$(\Delta/\sigma)_{\rm max} = 0.001$
7210 reflections	$\Delta \rho_{max} = 0.91 \text{ e} \text{ Å}^{-3}$
352 parameters	$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.474718 (13)	0.580180 (13)	0.753402 (10)	0.01404 (5)
Sn2	0.456706 (13)	0.604166 (12)	0.476911 (10)	0.01191 (5)
O1	0.41023 (18)	0.72441 (17)	0.74041 (13)	0.0253 (4)
O2	0.40862 (16)	0.75903 (15)	0.58632 (12)	0.0191 (3)
O3	0.37161 (16)	0.95576 (15)	0.57647 (12)	0.0214 (3)
Н3	0.3993	0.9035	0.5466	0.032*

O4	0.54344 (15)	0.43088 (14)	0.72857 (11)	0.0163 (3)
05	0.51748 (16)	0.45675 (15)	0.89385 (12)	0.0201 (3)
O6	0.55126 (18)	0.31818 (17)	17) 0.99204 (13)	
H6	0.5272	0.3749	0.9937	0.040*
07	0.48810 (14)	0.54280 (13)	0.59784 (11)	0.0140 (3)
C1	0.2821 (2)	0.4578 (2)	0.76932 (18)	0.0209 (4)
H1A	0.2382	0.3872	0.7011	0.025*
H1B	0.2912	0.4181	0.8223	0.025*
C2	0.1914 (2)	0.5184 (2)	0.80106 (18)	0.0214 (4)
H2A	0.1675	0.5439	0.7426	0.026*
H2B	0.2387	0.5972	0.8633	0.026*
C3	0.0665 (2)	0.4265 (2)	0.8274 (2)	0.0274 (5)
НЗА	0.0195	0.3475	0.7652	0.033*
H3B	0.0905	0.4013	0.8860	0.033*
C4	-0.0249 (3)	0.4862 (3)	0.8588 (2)	0.0366 (6)
H4A	-0.1034	0.4240	0.8752	0.055*
H4B	-0.0508	0.5094	0.8003	0.055*
H4C	0.0206	0.5637	0.9210	0.055*
C5	0.6564 (2)	0.7396 (2)	0.84066 (17)	0.0197 (4)
H5A	0.7011	0.7831	0.7912	0.024*
H5B	0.6361	0.8013	0.8931	0.024*
C6	0.7543 (2)	0.7138 (2)	0.89931 (18)	0.0228 (4)
H6A	0.7175	0.6846	0.9577	0.027*
H6B	0.7669	0.6437	0.8504	0.027*
C7	0.8873 (2)	0.8329 (2)	0.94411 (18)	0.0239 (5)
H7A	0.9283	0.8563	0.8850	0.029*
H7B	0.8734	0.9057	0.9865	0.029*
C8	0.9803 (3)	0.8134 (3)	1.0124 (2)	0.0369 (6)
H8A	1.0637	0.8925	1.0386	0.055*
H8B	0.9960	0.7425	0.9706	0.055*
H8C	0.9414	0.7925	1.0722	0.055*
C9	0.2521 (2)	0.4950 (2)	0.41335 (16)	0.0172 (4)
H9A	0.2197	0.5510	0.3934	0.021*
H9B	0.2380	0.4239	0.3485	0.021*
C10	0.1726 (2)	0.4388 (2)	0.49052 (17)	0.0183 (4)
H10A	0.1809	0.5104	0.5527	0.022*
H10B	0.2104	0.3894	0.5152	0.022*
C11	0.0273 (2)	0.3510(2)	0.44359 (19)	0.0252 (5)
H11A	0.0181	0.2778	0.3824	0.030*
H11B	-0.0110	0.3995	0.4180	0.030*
C12	-0.0483 (2)	0.2992 (3)	0.5246 (2)	0.0330 (6)
H12A	-0.1410	0.2432	0.4920	0.050*
H12B	-0.0406	0.3714	0.5847	0.050*
H12C	-0.0115	0.2498	0.5492	0.050*
C13	0.6307 (2)	0.76707 (19)	0.47831 (16)	0.0160 (4)
H13A	0.6772	0.7380	0.4247	0.019*
H13B	0.6055	0.8266	0.4568	0.019*
C14	0.7264 (2)	0.8419 (2)	0.58388 (16)	0.0171 (4)
H14A	0.6834	0.8776	0.6370	0.021*

H14B	0.7488	0.7824	0.6082	0.021*
C15	0.8518 (2)	0.9512 (2)	0.57547 (18)	0.0231 (5)
H15A	0.8287	1.0088	0.5488	0.028*
H15B	0.8956	0.9149	0.5237	0.028*
C16	0.9473 (2)	1.0299 (2)	0.6806 (2)	0.0314 (5)
H16A	1.0258	1.0991	0.6709	0.047*
H16B	0.9725	0.9740	0.7065	0.047*
H16C	0.9050	1.0674	0.7319	0.047*
C17	0.5490 (2)	0.4027 (2)	0.81372 (16)	0.0154 (4)
C18	0.5934 (2)	0.30563 (19)	0.81605 (16)	0.0155 (4)
C19	0.5912 (2)	0.2678 (2)	0.90565 (17)	0.0210 (4)
C20	0.6303 (3)	0.1737 (2)	0.9064 (2)	0.0295 (5)
H20	0.6281	0.1472	0.9666	0.035*
C21	0.6721 (3)	0.1191 (2)	0.8199 (2)	0.0313 (6)
H21	0.6990	0.0556	0.8215	0.038*
C22	0.6754 (2)	0.1561 (2)	0.73042 (19)	0.0250 (5)
H22	0.7044	0.1183	0.6712	0.030*
C23	0.6359 (2)	0.2481 (2)	0.72919 (17)	0.0186 (4)
H23	0.6375	0.2732	0.6682	0.022*
C24	0.39034 (19)	0.78038 (19)	0.68108 (17)	0.0148 (4)
C25	0.3413 (2)	0.8755 (2)	0.72378 (16)	0.0167 (4)
C26	0.3334 (2)	0.9564 (2)	0.67047 (17)	0.0179 (4)
C27	0.2884 (2)	1.0455 (2)	0.71614 (18)	0.0224 (4)
H27	0.2829	1.1005	0.6801	0.027*
C28	0.2519 (2)	1.0542 (2)	0.81310 (19)	0.0266 (5)
H28	0.2229	1.1162	0.8442	0.032*
C29	0.2572 (3)	0.9720 (2)	0.86622 (19)	0.0286 (5)
H29	0.2307	0.9772	0.9326	0.034*
C30	0.3010 (2)	0.8841 (2)	0.82159 (19)	0.0251 (5)
H30	0.3042	0.8280	0.8574	0.030*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.01990 (8)	0.01605 (8)	0.01136 (8)	0.01119 (6)	0.00618 (5)	0.00671 (6)
Sn2	0.01459 (8)	0.01233 (8)	0.01148 (8)	0.00713 (6)	0.00409 (5)	0.00591 (5)
01	0.0400 (10)	0.0301 (9)	0.0223 (8)	0.0263 (8)	0.0132 (7)	0.0147 (7)
O2	0.0282 (8)	0.0202 (7)	0.0158 (7)	0.0162 (7)	0.0086 (6)	0.0070 (6)
O3	0.0302 (8)	0.0235 (8)	0.0191 (7)	0.0171 (7)	0.0104 (6)	0.0109 (6)
O4	0.0236 (7)	0.0180 (7)	0.0122 (7)	0.0122 (6)	0.0061 (6)	0.0073 (6)
O5	0.0297 (8)	0.0245 (8)	0.0150 (7)	0.0177 (7)	0.0091 (6)	0.0098 (6)
O6	0.0423 (10)	0.0318 (9)	0.0164 (8)	0.0234 (8)	0.0087 (7)	0.0128 (7)
O7	0.0192 (7)	0.0157 (7)	0.0119 (6)	0.0104 (6)	0.0053 (5)	0.0072 (5)
C1	0.0233 (11)	0.0226 (11)	0.0223 (11)	0.0123 (9)	0.0092 (9)	0.0114 (9)
C2	0.0211 (11)	0.0251 (11)	0.0205 (10)	0.0128 (9)	0.0073 (8)	0.0071 (9)
C3	0.0250 (12)	0.0308 (12)	0.0275 (12)	0.0129 (10)	0.0109 (9)	0.0101 (10)
C4	0.0250 (13)	0.0423 (15)	0.0392 (16)	0.0164 (12)	0.0111 (11)	0.0062 (12)
C5	0.0256 (11)	0.0177 (10)	0.0160 (10)	0.0100 (9)	0.0049 (8)	0.0056 (8)

C6	0.0273 (12)	0.0204 (11)	0.0196 (10)	0.0108 (9)	0.0010 (9)	0.0057 (9)
C7	0.0256 (11)	0.0223 (11)	0.0219 (11)	0.0095 (9)	0.0047 (9)	0.0068 (9)
C8	0.0357 (14)	0.0285 (13)	0.0418 (15)	0.0128 (12)	-0.0047 (12)	0.0097 (12)
C9	0.0166 (10)	0.0213 (10)	0.0147 (9)	0.0089 (8)	0.0035 (8)	0.0071 (8)
C10	0.0170 (10)	0.0202 (10)	0.0182 (10)	0.0078 (8)	0.0049 (8)	0.0079 (8)
C11	0.0197 (11)	0.0267 (12)	0.0240 (11)	0.0065 (9)	0.0041 (9)	0.0078 (9)
C12	0.0210 (12)	0.0326 (13)	0.0364 (14)	0.0031 (10)	0.0091 (10)	0.0125 (11)
C13	0.0202 (10)	0.0154 (9)	0.0148 (9)	0.0084 (8)	0.0065 (8)	0.0075 (8)
C14	0.0198 (10)	0.0152 (9)	0.0161 (10)	0.0074 (8)	0.0043 (8)	0.0057 (8)
C15	0.0206 (11)	0.0201 (11)	0.0245 (11)	0.0056 (9)	0.0064 (9)	0.0075 (9)
C16	0.0219 (12)	0.0273 (12)	0.0337 (13)	0.0053 (10)	-0.0005 (10)	0.0046 (10)
C17	0.0143 (9)	0.0159 (9)	0.0153 (10)	0.0051 (8)	0.0029 (7)	0.0071 (8)
C18	0.0157 (9)	0.0149 (9)	0.0171 (10)	0.0075 (8)	0.0019 (7)	0.0063 (8)
C19	0.0266 (11)	0.0201 (10)	0.0180 (10)	0.0114 (9)	0.0025 (8)	0.0080 (9)
C20	0.0454 (15)	0.0299 (13)	0.0231 (12)	0.0236 (12)	0.0022 (10)	0.0134 (10)
C21	0.0398 (14)	0.0286 (13)	0.0336 (13)	0.0237 (12)	-0.0009 (11)	0.0101 (11)
C22	0.0294 (12)	0.0228 (11)	0.0260 (12)	0.0168 (10)	0.0041 (9)	0.0051 (9)
C23	0.0200 (10)	0.0180 (10)	0.0193 (10)	0.0096 (9)	0.0036 (8)	0.0070 (8)
C24	0.0125 (9)	0.0123 (9)	0.0200 (10)	0.0049 (8)	0.0049 (7)	0.0067 (8)
C25	0.0185 (10)	0.0172 (10)	0.0159 (10)	0.0096 (8)	0.0044 (8)	0.0050 (8)
C26	0.0194 (10)	0.0195 (10)	0.0172 (10)	0.0099 (8)	0.0057 (8)	0.0078 (8)
C27	0.0273 (12)	0.0220 (11)	0.0261 (11)	0.0154 (10)	0.0093 (9)	0.0125 (9)
C28	0.0326 (13)	0.0279 (12)	0.0274 (12)	0.0219 (11)	0.0098 (10)	0.0071 (10)
C29	0.0425 (14)	0.0348 (13)	0.0210 (11)	0.0258 (12)	0.0156 (10)	0.0124 (10)
C30	0.0350(13)	0.0290 (12)	0.0224 (11)	0.0210(11)	0.0109 (10)	0.0132 (10)

Geometric parameters (Å, °)

Sn1—C1	2.134 (2)	С9—Н9А	0.9900
Sn1—C5	2.130 (2)	С9—Н9В	0.9900
Sn1—O1	2.217 (2)	C10-C11	1.525 (3)
Sn1—O4	2.220 (1)	C10—H10A	0.9900
Sn1—O7	2.039(1)	C10—H10B	0.9900
Sn2—C9	2.127 (2)	C11—C12	1.528 (3)
Sn2—C13	2.124 (2)	C11—H11A	0.9900
Sn2—O2	2.327 (2)	C11—H11B	0.9900
Sn2—O4 ⁱ	2.674 (1)	C12—H12A	0.9800
Sn2—O7	2.046 (1)	C12—H12B	0.9800
Sn2—O7 ⁱ	2.148 (1)	C12—H12C	0.9800
Sn2—Sn2 ⁱ	3.2797 (3)	C13—C14	1.527 (3)
O1—C24	1.254 (3)	C13—H13A	0.9900
O2—C24	1.272 (3)	C13—H13B	0.9900
O3—C26	1.355 (3)	C14—C15	1.522 (3)
О3—Н3	0.8400	C14—H14A	0.9900
O4—C17	1.290 (2)	C14—H14B	0.9900
O5—C17	1.249 (3)	C15—C16	1.524 (3)
O6—C19	1.349 (3)	C15—H15A	0.9900
O6—H6	0.8400	C15—H15B	0.9900

O7—Sn2 ⁱ	2.1481 (14)	C16—H16A	0.9800
C1—C2	1.523 (3)	C16—H16B	0.9800
C1—H1A	0.9900	C16—H16C	0.9800
C1—H1B	0.9900	C17—C18	1.478 (3)
C2—C3	1.526 (3)	C18—C19	1.403 (3)
C2—H2A	0.9900	C18—C23	1.404 (3)
C2—H2B	0.9900	C19—C20	1.396 (3)
C3—C4	1.522 (3)	C20—C21	1.381 (4)
С3—НЗА	0.9900	С20—Н20	0.9500
С3—Н3В	0.9900	C21—C22	1.395 (4)
C4—H4A	0.9800	C21—H21	0.9500
C4—H4B	0.9800	C22—C23	1.378 (3)
C4—H4C	0.9800	C22—H22	0.9500
C5—C6	1.529 (3)	С23—Н23	0.9500
C5—H5A	0.9900	C24—C25	1.481 (3)
С5—Н5В	0.9900	C25—C26	1.398 (3)
C6—C7	1.526 (3)	C25—C30	1.403 (3)
С6—Н6А	0.9900	C26—C27	1.396 (3)
С6—Н6В	0.9900	C27—C28	1.376 (3)
С7—С8	1.511 (3)	С27—Н27	0.9500
С7—Н7А	0.9900	C28—C29	1.400 (3)
С7—Н7В	0.9900	C28—H28	0.9500
C8—H8A	0.9800	C29—C30	1.371 (3)
C8—H8B	0.9800	С29—Н29	0.9500
C8—H8C	0.9800	С30—Н30	0.9500
C9—C10	1.524 (3)		
O7—Sn1—C5	106.97 (7)	Sn2—C9—H9A	109.0
O7—Sn1—C1	110.04 (7)	С10—С9—Н9В	109.0
C1—Sn1—C5	142.7 (1)	Sn2—C9—H9B	109.0
O7—Sn1—O1	88.26 (6)	H9A—C9—H9B	107.8
C5—Sn1—O1	86.54 (8)	C9—C10—C11	113.68 (18)
C1—Sn1—O1	90.33 (8)	C9-C10-H10A	108.8
O7—Sn1—O4	78.77 (5)	C11—C10—H10A	108.8
C5—Sn1—O4	96.61 (7)	C9-C10-H10B	108.8
C1—Sn1—O4	94.63 (7)	C11—C10—H10B	108.8
O1—Sn1—O4	167.02 (6)	H10A—C10—H10B	107.7
O7—Sn2—C13	109.41 (7)	C10-C11-C12	111.6 (2)
O7—Sn2—C9	105.66 (7)	C10-C11-H11A	109.3
C9—Sn2—C13	144.0 (1)	C12—C11—H11A	109.3
$O7$ — $Sn2$ — $O7^{i}$	77.15 (6)	C10—C11—H11B	109.3
C13—Sn2—O7 ⁱ	98.31 (7)	C12—C11—H11B	109.3
$C9 = Sn^2 = O7^i$	97.06 (7)	H11A—C11—H11B	108.0
07—Sn2—O2	92.54 (5)	C11—C12—H12A	109.5
$C13 - Sn^2 - O^2$	83.38 (7)	C11—C12—H12B	109.5
C9 = Sn2 = O2	87 28 (7)	H12A— $C12$ — $H12B$	109.5
$O7^{i}$ Sn2 O2	169 55 (5)	$C_{11} = C_{12} = H_{12}C_{12}$	109.5
	107.55 (5)		107.5
07—Sn2—O4'	144.40 (5)	H12A—C12—H12C	109.5

C13—Sn2—O4 ⁱ	77.34 (6)	H12B—C12—H12C	109.5
C9—Sn2—O4 ⁱ	78.99 (6)	C14—C13—Sn2	115.51 (13)
O7 ⁱ —Sn2—O4 ⁱ	67.25 (5)	C14—C13—H13A	108.4
O2—Sn2—O4 ⁱ	123.06 (5)	Sn2—C13—H13A	108.4
O7—Sn2—Sn2 ⁱ	39.68 (4)	C14—C13—H13B	108.4
C13—Sn2—Sn2 ⁱ	107.57 (6)	Sn2—C13—H13B	108.4
$C9$ — $Sn2$ — $Sn2^{i}$	104.41 (6)	H13A—C13—H13B	107.5
07^{i} Sn2 Sn2	37.46 (4)	C15—C14—C13	111.74 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	132 20 (4)	C15-C14-H14A	109.3
	104 71 (2)	C_{13} C_{14} H_{14A}	100.3
$04^{-}-5n2^{-}-5n2^{-}$	104.71 (3)	C15_C14_H14A	109.3
$C_{24} = 01 = S_{11}$	145.23 (14)	C13—C14—H14B	109.3
$C_{24} = 0_{2} = S_{12}$	131.75 (13)	C13—C14—H14B	109.3
$C_{20} = 03 = H_3$	120.0	H14A - C14 - H14B	107.9
C17 = 04 = S11	109.71 (13)	C14 - C15 - C16	112.79 (19)
C19—06—H6	120.0	CI4—CI5—HI5A	109.0
sn1—07—sn2	137.90(7)	CI6—CI5—HI5A	109.0
$Sn1-O7-Sn2^{1}$	119.21 (6)	C14—C15—H15B	109.0
$Sn2-O7-Sn2^{i}$	102.85 (6)	C16—C15—H15B	109.0
C2—C1—Sn1	117.60 (15)	H15A—C15—H15B	107.8
C2—C1—H1A	107.9	C15—C16—H16A	109.5
Sn1—C1—H1A	107.9	C15-C16-H16B	109.5
C2—C1—H1B	107.9	H16A—C16—H16B	109.5
Sn1—C1—H1B	107.9	C15—C16—H16C	109.5
H1A—C1—H1B	107.2	H16A—C16—H16C	109.5
C1—C2—C3	112.06 (19)	H16B—C16—H16C	109.5
C1—C2—H2A	109.2	O5—C17—O4	120.69 (19)
C3—C2—H2A	109.2	O5-C17-C18	119.94 (18)
C1—C2—H2B	109.2	O4—C17—C18	119.37 (18)
С3—С2—Н2В	109.2	C19—C18—C23	118.82 (19)
H2A—C2—H2B	107.9	C19—C18—C17	119.86 (19)
C4—C3—C2	112.4 (2)	C23—C18—C17	121.30 (19)
С4—С3—НЗА	109.1	O6-C19-C20	118.1 (2)
С2—С3—НЗА	109.1	O6-C19-C18	122.4 (2)
С4—С3—Н3В	109.1	C20-C19-C18	119.6 (2)
С2—С3—Н3В	109.1	C21—C20—C19	120.3 (2)
НЗА—СЗ—НЗВ	107.9	C21—C20—H20	119.8
C3—C4—H4A	109.5	C19—C20—H20	119.8
C3—C4—H4B	109.5	C20—C21—C22	120.8 (2)
H4A—C4—H4B	109.5	C20—C21—H21	119.6
C3—C4—H4C	109.5	C22—C21—H21	119.6
H4A—C4—H4C	109.5	C23—C22—C21	119.0 (2)
H4B—C4—H4C	109.5	C23—C22—H22	120.5
C6—C5—Sn1	118.38 (15)	C21—C22—H22	120.5
С6—С5—Н5А	107.7	C22—C23—C18	121.5 (2)
Sn1—C5—H5A	107.7	C22—C23—H23	119.3
С6—С5—Н5В	107.7	C18—C23—H23	119.3

Sp1 C5 H5P	107.7	01 C24 02	123 73 (10)
H5A—C5—H5B	107.1	01-C24-C25	117.86 (18)
C7 - C6 - C5	112 48 (19)	$0^{2}-C^{2}4-C^{2}5$	118 40 (18)
C7—C6—H6A	109.1	$C_{26} - C_{25} - C_{30}$	119.1 (2)
С5—С6—Н6А	109.1	C26—C25—C24	122.59 (19)
С7—С6—Н6В	109.1	C30—C25—C24	118.34 (19)
С5—С6—Н6В	109.1	O3—C26—C27	117.32 (19)
Н6А—С6—Н6В	107.8	O3—C26—C25	123.03 (19)
C8—C7—C6	113.1 (2)	C27—C26—C25	119.6 (2)
С8—С7—Н7А	108.9	C28—C27—C26	120.4 (2)
С6—С7—Н7А	108.9	С28—С27—Н27	119.8
С8—С7—Н7В	108.9	С26—С27—Н27	119.8
С6—С7—Н7В	108.9	C27—C28—C29	120.4 (2)
H7A—C7—H7B	107.8	С27—С28—Н28	119.8
С7—С8—Н8А	109.5	С29—С28—Н28	119.8
С7—С8—Н8В	109.5	C30—C29—C28	119.4 (2)
H8A—C8—H8B	109.5	С30—С29—Н29	120.3
С7—С8—Н8С	109.5	С28—С29—Н29	120.3
H8A—C8—H8C	109.5	C29—C30—C25	121.1 (2)
H8B—C8—H8C	109.5	С29—С30—Н30	119.5
C10—C9—Sn2	112.74 (13)	С25—С30—Н30	119.5
С10—С9—Н9А	109.0		
O7—Sn1—O1—C24	-4.1 (3)	O4 ⁱ —Sn2—C9—C10	164.52 (16)
C5—Sn1—O1—C24	103.0 (3)	Sn2 ⁱ —Sn2—C9—C10	61.98 (15)
C1—Sn1—O1—C24	-114.1 (3)	Sn2—C9—C10—C11	-175.14 (15)
O4—Sn1—O1—C24	-1.5 (5)	C9—C10—C11—C12	-179.0 (2)
O7—Sn2—O2—C24	-9.13 (19)	O7—Sn2—C13—C14	-22.38 (17)
C13—Sn2—O2—C24	-118.38 (19)	C9—Sn2—C13—C14	144.04 (15)
C9—Sn2—O2—C24	96.44 (19)	O7 ⁱ —Sn2—C13—C14	-101.60 (15)
O7 ⁱ —Sn2—O2—C24	-18.4 (4)	O2—Sn2—C13—C14	67.99 (15)
O4 ⁱ —Sn2—O2—C24	171.42 (17)	O4 ⁱ —Sn2—C13—C14	-165.93 (16)
$Sn2^{i}$ — $Sn2$ — $O2$ — $C24$	-10.6 (2)	Sn2 ⁱ —Sn2—C13—C14	-64.28 (15)
O7—Sn1—O4—C17	-176.32 (14)	Sn2—C13—C14—C15	176.22 (14)
C5—Sn1—O4—C17	77.63 (14)	C13-C14-C15-C16	178.31 (19)
C1—Sn1—O4—C17	-66.79 (14)	Sn1—O4—C17—O5	0.3 (2)
O1—Sn1—O4—C17	-178.9 (2)	Sn1—O4—C17—C18	-179.56 (14)
C5—Sn1—O7—Sn2	-86.37 (12)	O5-C17-C18-C19	4.5 (3)
C1—Sn1—O7—Sn2	89.20 (12)	O4—C17—C18—C19	-175.62 (19)
O1—Sn1—O7—Sn2	-0.52 (11)	O5-C17-C18-C23	-176.68 (19)
O4—Sn1—O7—Sn2	-179.93 (12)	O4—C17—C18—C23	3.2 (3)
C5—Sn1—O7—Sn2 ⁱ	96.30 (9)	C23—C18—C19—O6	-179.8 (2)
C1—Sn1—O7—Sn2 ⁱ	-88.14 (9)	C17—C18—C19—O6	-0.9 (3)
O1—Sn1—O7—Sn2 ⁱ	-177.85 (8)	C23—C18—C19—C20	-0.4 (3)
$O4$ — $Sn1$ — $O7$ — $Sn2^i$	2.74 (7)	C17—C18—C19—C20	178.5 (2)
C13—Sn2—O7—Sn1	87.99 (12)	O6—C19—C20—C21	-180.0 (2)
C9—Sn2—O7—Sn1	-83.77 (12)	C18—C19—C20—C21	0.6 (4)

O7 ⁱ —Sn2—O7—Sn1	-177.61 (15)	C19—C20—C21—C22	-0.4 (4)	
O2—Sn2—O7—Sn1	4.11 (11)	C20—C21—C22—C23	-0.1 (4)	
O4 ⁱ —Sn2—O7—Sn1	-176.69 (7)	C21—C22—C23—C18	0.4 (4)	
Sn2 ⁱ —Sn2—O7—Sn1	-177.61 (15)	C19—C18—C23—C22	-0.1 (3)	
C13—Sn2—O7—Sn2 ⁱ	-94.40 (8)	C17—C18—C23—C22	-178.9 (2)	
C9—Sn2—O7—Sn2 ⁱ	93.84 (8)	Sn1—O1—C24—O2	0.2 (4)	
O7 ⁱ —Sn2—O7—Sn2 ⁱ	0.0	Sn1—O1—C24—C25	179.42 (19)	
O2—Sn2—O7—Sn2 ⁱ	-178.28 (6)	Sn2—O2—C24—O1	8.3 (3)	
O4 ⁱ —Sn2—O7—Sn2 ⁱ	0.93 (12)	Sn2—O2—C24—C25	-170.89 (14)	
O7—Sn1—C1—C2	-106.97 (16)	O1-C24-C25-C26	170.7 (2)	
C5—Sn1—C1—C2	66.0 (2)	O2-C24-C25-C26	-10.0 (3)	
O1—Sn1—C1—C2	-18.70 (17)	O1-C24-C25-C30	-9.4 (3)	
O4—Sn1—C1—C2	173.31 (16)	O2-C24-C25-C30	169.9 (2)	
Sn1—C1—C2—C3	-170.46 (16)	C30—C25—C26—O3	179.1 (2)	
C1—C2—C3—C4	-179.8 (2)	C24—C25—C26—O3	-1.0 (3)	
O7—Sn1—C5—C6	-104.35 (16)	C30-C25-C26-C27	1.3 (3)	
C1—Sn1—C5—C6	82.5 (2)	C24—C25—C26—C27	-178.9 (2)	
O1—Sn1—C5—C6	168.54 (17)	O3—C26—C27—C28	-178.0 (2)	
O4—Sn1—C5—C6	-24.11 (17)	C25—C26—C27—C28	0.0 (3)	
Sn1—C5—C6—C7	171.31 (15)	C26—C27—C28—C29	-1.2 (4)	
C5—C6—C7—C8	173.7 (2)	C27—C28—C29—C30	1.0 (4)	
O7—Sn2—C9—C10	20.85 (16)	C28—C29—C30—C25	0.3 (4)	
C13—Sn2—C9—C10	-145.86 (15)	C26—C25—C30—C29	-1.4 (4)	
O7 ⁱ —Sn2—C9—C10	99.42 (15)	C24—C25—C30—C29	178.7 (2)	
O2—Sn2—C9—C10	-71.03 (15)			
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3···O2	0.84	2.02	2.638 (2)	130
O6—H6…O5	0.84	1.91	2.548 (2)	132

