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ABSTRACT 
 
In this paper the applicability of artificial neural networks 
(ANN) is investigated for a retrofitted compressed 
natural gas (CNG) fueled spark ignition (SI) internal 
combustion engine (ICE). A four cylinder carbureted 
petrol engine is converted to run with NG and used 
throughout the work. The neural networks toolbox of 
Matlab 6.5 is used to develop and test the ANN model on 
a personal computer. An optimal design is completed for 
the 3 to 12 hidden neurons on single hidden layer with 
six different algorithms: batch gradient descent (GD), 
resilient back-propagation (RP), levenberg-marquardt 
(LM), batch gradient descent with momentum (GDM), 
variable learning rate (GDX), scaled conjugate gradient 
(SCG) in the back-propagation neural network model. 
The training data for ANN is obtained from experimental 
measurements. Engine speed (rpm), throttle position, 
fuel-air equivalence ratio (φ) and torque (N-m) were used 
in input layer while break specific fuel consumption 
(gm/kWh) was used as output layer. Statistical analysis 
in terms of Root-Mean-Squared (RMS), absolute fraction 
of variance (R2), as well as mean percentage error is used 
to investigate the prediction performance of ANN. LM 
algorithm with 10 neurons on single hidden layer in 
back-propagation of ANN model has shown best result in 
the present study. The degree of accuracy of the ANN 
model in prediction is proven acceptable in all statistical 
analysis and shown in results. So, it can be concluded 
that ANN provides a feasible method in predicting 
specific fuel consumption of CNG driven SI engine. 
 
Keywords: Internal combustion engine (ICE), 
Compressed natural gas (CNG), Artificial neural network 
(ANN) and Specific fuel consumption (SFC) 
 
 

1. INTRODUCTION 
 
It is well known that fossil fuel reserves all over the 
world are diminishing at an alarming rate and a shortage  
of crude oil is expected within the next few decades. The 
world total natural gas (NG) reserve as of January 1, 
2007 was 6,183 Tscf and based on the current 

consumption rates, the estimated total recoverable gas, 
including proven reserves is adequate for about 66.7 
years (IEO,2008). This has resulted in an increased 
interest to use CNG as fuel for internal combustion 
engines. The merits of CNG as an automotive fuel over 
conventional fuels are many and presented 
comprehensively by Nylund et al. (2002) and Aslam et al. 
(2003). Due to some of its favorable physio-chemical 
properties, CNG appears to be an excellent fuel for the 
spark ignition (SI) engine. Moreover, SI engines can be 
converted to CNG operation quite easily with the 
addition of a second fueling system. CNG has been used 
in vehicles since 1930’s and the current worldwide NGV 
population is more than 4.5 million according to the 
International Association for Natural Gas Vehicle 
(IANGV) statistics and this figure is fast increasing 
everyday ( Aslam et  al., 2006). 
 
To investigate experimentally the performance of an 
engine is complex, time consuming and costly, especially 
for studies, which use many, different blends. Therefore, 
a mathematical model is used to predict the performance 
and emissions of the engines. But, the resulting 
accuracies may not always be satisfactory. One 
alternative to the mathematical model is the experiment-
based approach, such as artificial neural-networks 
(ANNs). Neural networks are nonlinear computer 
algorithms, which can model the behavior of complicated 
nonlinear processes. For the development of high speed 
digital computers, the application of ANN approach 
could be progressed at a very impressive rate. In recent 
years, this method has been applied to various disciplines 
including automotive engineering, in forecasting of 
engine thermal characteristics for different working 
conditions. Some researchers studied this method to 
predict internal combustion engine characteristics. 
Artificial neural network approach has been used by 
Yuanwang et al. (Aslam et Al., 2006), to analyze the 
effect of cetane number on exhaust emissions from 
engine, Lucas et al. (Yuanwang et al., 2003), to model 
Diesel particulate emission, Hafner et al. (Lucas et al., 
2001), for diesel engine control design, Shayler et. al. 
(2000), in automotive engine management systems, Tan 
and Saif, (2000), to model the intake manifold and 
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throttle body processes in an automotive engine. Those 
studies do not need an explicit formulation of the 
physical relationships of concerned problems. Several 
studies have also used ANNs in different engineering 
areas (Sozen et. al., 2005).  
 
In the existing literatures, it was shown that the use of 
ANN is a powerful modeling tool that has the ability to 
identify complex relationships from input–output data. 
However, no investigation to predict engine specific fuel 
consumption (SFC, gm/kWh), retrofitted CNG fueled IC 
engine using ANN approach appears to have been 
published in the literature to date. Therefore, the present 
work investigates the applicability of ANN method for 
predicting the specific fuel consumption parameter. 
 

 
 

Figure 1: Layout of the experimental setup 
 

    

2. EXPERIMENTAL SETUP AND TEST 
PROCEDURE 

 
The layout of the experimental setup has shown in Figure 
1. The test engine has been converted from a gasoline 
(Proton Magma) engine and has been equipped with a bi-
fuelling system. The main specifications of the test 
engine are listed in Table 1.  

 
Table 1: Specifications of the research engine 

 
Characteristic 
Displacement  
Compression ratio 
Bore   
Stroke   
Max output (kW/rpm) 
Max torque (Nm/rpm) 
Carburetor  

:Proton Magma12-Valve 
:1,468 cc 
:9.2: 1 
:75.5 mm 
:82 mm 
:64/6000  
:122/3500  
:Down-draft 2-barrel 

 
An AG 150 (Froude Consine) eddy-current dynamometer 
has been used for testing the engine. All the electronic 
equipment, together with its manipulative controls and 

indicators, etc was mounted on ‘CP Cadet10’ control unit. 
The engine has been operated at constant throttle 30%, 
40%, and 50% and 100% with a variable speed range of 
1500-3500 RPM at a constant increment of 100 RPM. 
CNG consumption has been measured with Kobold gas 
flow meter (Model WFM 2705). The CNG flow meter 
was incorporated with engine control system through 
interface cards. A PC-based data acquisition and control 
system has been used for controlling all the operation 
regarding the test where every stage was allowed to run 
around 6–8 min with updating data in every 30 s. Torque, 
power and fuel consumption have been measured to 
calculate SFC. 
 

3. ARTIFICIAL NEURAL NETWORKS  

A widely used NN model called the multi-layer 
perception (MLP) NN is shown in Figure 2. The MLP 
type NN consists of one input layer, one or more hidden 
layer (s) (middle) in between input and output layers and 
one output layer. Each layer employs several neurons 
(nodes), and each neuron in a layer is connected to the 
neurons in the adjacent layer with different weights. The 
weights, after training, contain meaningful information, 
whereas before training they are random and have no 
meaning (Erol et al., 2004). 
 
Signals flow into the input layer, pass through the hidden 
layer(s), and arrive at the output layer. With the 
exception of the input layer, each neuron receives signals 
from the neurons of the previous layer. The incoming 
signals or input (xij) are multiplied by the weights (vij) 
and summed up with the bias (bj) contribution. 
Mathematically it can be expressed as: 

jij

n

i
i bVX += ∑

=1
jnet  (1) 

The output of a neuron is determined by applying an 
activation function to the total input and calculated using 
Equation 1 (Kreider et al., 1992). If the computed outputs 
do not match the known (i.e. target) values, NN model is 
in error. Then, a portion of this error is propagated 
backward through the network. This error is used to 
adjust the weight and bias of each neuron throughout the 
network so the next iteration error will be less for the 
same units. The procedure is applied continuously and 
repetitively for each set of inputs until there are no 
measurable errors, or the total error is smaller than a 
specified value. 
 
The following procedures have been executed in all the 
models developed; (i) database collection; (ii) analysis 
and preprocessing of the data; (iii) training of the neural 
network; (iv) testing the train network; and (v) using the 
trained ANN for simulation and prediction using trained 
network. An important stage of a neural network is the 
training step, in which an input is introduced to the 
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network together with the desired output: the weights and 
bias values are initially chosen randomly and the weights 
adjusted so that the network produces the desired output. 
After training, the weights contain meaningful 
information, contrary to the initial stage where they are 
random and meaningless. When a satisfactory level of 
performance is reached, the training stops, and the 
network uses the weights to make decisions.  
 

 
 

Figure 2: Architectural graph of a Multilayer Perception 
(MLP) with one hidden layer 

                                                                                                                                                     
4. APPLICATION OF NEURAL NETWORKS IN 

THE PRESENT STUDY 
 
Three data sets are needed for ANNs: for training, 
validation and testing the network. The usual approach is 
to prepare a single data-set, and differentiate it by a 
random selection. In this study, the experimental results 
mentioned above were used to train, validate and test an 
artificial neural-network. Engine speed (rpm), throttle 
position, fuel-air equivalence ratio and torque (N-m) are 
used in input layer while break specific fuel consumption 
(gm/kWh) used as output layer.  The learning algorithm 
called the back-propagation was applied for the single 
hidden layer. Batch gradient descent (GD), resilient 
backpropegation (RP), levenberg-marquardt (LM), batch 
gradient descent with momentum (GDM), variable 
learning rate (GDX), scaled conjugate gradient (SCG) 
algorithms have been used for the variants. The Neural 
Network has been optimized using the MATLAB 
Version 6.5 Neural Network Toolbox. In the training 
stage, to define the output accurately, we tried to increase 
the number of neurons step-by-step (i.e 3–12) in the 
hidden layer. Inputs and outputs have been normalized in 
the range of (0.1–0.9) as NN works efficiently within this 

range. Neurons in the input layer have no transfer 
function. Logistic sigmoid (logsig) transfer function has 
been used in hidden layer while purelinear (purelin) 
transfer function has been used in output layer.   After the 
successful training of the network, the network was 
tested with the test data. Using the results produced by 
the network, statistical methods have been used to make 
comparisons.   
 

Table 2: Data sets used for training the network 
 

30%T
ht 

RPM Equivalence 
ratio, φ 

Torque (N-
m) 

SFC 
(gm/kWh) 

30 1500 1.030 68.14 301.49 
30 1700 1.039 67.06 295.81 
30 1900 1.048 64.31 295.42 
30 2100 1.056 60.27 299.82 
30 2300 1.065 55.32 308.48 
30 2500 1.074 49.86 320.91 
30 2700 1.083 44.25 336.57 
30 2900 1.092 38.89 354.98 
30 3100 1.100 34.17 375.60 
30 3300 1.109 30.45 397.93 
30 3500 1.118 28.14 421.46 
40 1500 1.060 70.00 313.00 
40 1600 1.063 69.95 300.95 
40 1800 1.070 69.71 292.82 
40 2000 1.080 69.00 287.93 
40 2200 1.091 67.59 285.78 
40 2400 1.104 65.39 286.00 
40 2600 1.116 62.43 288.40 
40 2800 1.129 58.87 292.92 
40 3000 1.140 55.00 299.66 
40 3200 1.150 51.23 308.89 
40 3400 1.157 48.11 321.00 
50 1500 1.200 76.81 331.51 
50 1700 1.193 75.46 323.64 
50 1900 1.191 74.29 317.00 
50 2100 1.193 73.20 311.59 
50 2300 1.199 72.10 307.42 
50 2500 1.207 70.88 304.48 
50 2700 1.217 69.47 302.78 
50 2900 1.227 67.75 302.31 
50 3100 1.236 65.63 303.08 
50 3300 1.244 63.02 305.08 
50 3500 1.250 59.81 308.31 

100 1600 0.975 72.74 320.97 
100 1800 0.981 76.28 298.77 
100 2000 0.984 78.02 285.96 
100 2200 0.986 78.71 279.08 
100 2400 0.988 78.94 275.41 
100 2600 0.989 79.12 272.98 
100 2800 0.991 79.47 270.54 
100 3000 0.994 80.03 267.60 
100 3200 0.999 80.67 264.41 
100 3400 1.007 81.07 261.98 
100 3500 1.011 81.03 262.02 
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Table 3: Data sets used for validation 
 

30%Tht 30%Tht 
RPM 

Equivalence 
ratio, φ 

Torque (N-
m) 

SFC 
(gm/kWh) 

30 1600 1.034 67.84 297.95 
30 2000 1.052 62.43 297.05 
30 2400 1.070 52.63 314.26 
30 2800 1.087 41.52 345.46 
30 3200 1.105 32.16 386.58 
40 1900 1.075 69.43 306.44 
40 2300 1.097 66.59 290.00 
40 2700 1.123 60.71 285.61 
40 3100 1.145 53.07 290.39 
40 3500 1.160 47.00 303.94 
50 1800 1.191 74.86 327.42 
50 2200 1.196 72.66 314.14 
50 2600 1.212 70.21 305.80 
50 3000 1.232 66.74 302.39 
50 3400 1.247 61.50 303.93 

100 1700 0.978 74.79 308.45 
100 2100 0.986 78.45 281.97 
100 2500 0.989 79.02 274.14 
100 2900 0.993 79.73 269.13 
100 3300 1.003 80.92 263.01 
 

Table 4: Data sets use for test network 
 

30%Tht Engine 
Speed 
RPM 

Equivalence 
ratio, φ 

Torque 
(N-m) 

SFC (gm/kWh) 

30 1800 1.043 65.87 294.98 
30 2200 1.061 57.89 303.65 
30 2600 1.078 47.05 328.37 
40 1800 1.070 36.43 296.44 
40 2200 1.091 29.10 286.54 
40 2600 1.116 69.87 286.94 
40 3000 1.140 68.39 296.00 
40 3400 1.157 64.00 314.55 
50 1800 1.191 56.95 320.16 
30 3000 1.096 49.55 365.04 
30 3400 1.114 76.11 409.58 
50 2200 1.196 73.74 309.35 
50 2600 1.212 71.51 303.48 
50 3000 1.232 68.65 302.54 
50 3400 1.247 64.39 306.54 

100 1800 0.981 70.01 291.42 
100 2200 0.986 77.32 276.99 
100 2600 0.989 78.86 271.80 
100 3000 0.994 79.27 265.99 
100 3400 1.007 80.35 261.55 

 
5. MEASURES OF PREDICTION 

PERFORMANCE 
 
Using the results produced by the network, statistical 
methods have been used to investigate the prediction 

performance of NN results. To judge the prediction 
performance of a network, several performance measures 
are used. Those include statistical analysis in terms of 
Root-Mean-Squared (RMS), absolute fraction of variance 
(R2), as well as mean error percentage values [11]. Those 
are defined bellow: 
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where 
Ea-Actual result 
Ep-Predicted result 
Em-Mean value 
N-Number of pattern 
 
 The coefficient of multiple determinations R2 compares 
the accuracy of the model to the accuracy of a trivial 
benchmark model. A perfect fit would result in an R2 
value of 1 and a very good fit near 1.  
 
6. RESULTS AND DISCUSSIONS  
 
The aim of using the Artificial Neural Network (ANN) is 
to test the ability to predict specific fuel consumption of  
retrofitted CNG engine. The network has four input 
parameters: Engine speed (rpm), throttle position, fuel-air 
equivalence ratio and torque (N-m) and one output 
parameter: specific fuel consumption. The experimental 
data set includes 84 values, of which 44 values were used 
for training network, 20 values were used for validation 
and 20 values were selected randomly to test the 
performance of the trained network. The experimental 
results are shown in Tables 1-3. All of the input and 
output values were normalized into the range 0.1–0.9. 
Validation values were used for early stop of training and 
to avoid over tainting. After 30 training cycles the level 
of error was satisfactory and further cycles had no 
significant effect on error reduction of testing. This can 
clearly be seen in Fig. 3. In the training, an increased 
number of neurons (from 3 to 12) are used in the hidden 
layer to define the output accurately for the batch 
gradient descent (GD), resilient backpropegation (RP), 
levenberg-marquardt (LM), batch gradient descent with 
momentum (GDM), variable learning rate (GDX), scaled 
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conjugate gradient (SCG) algorithms. The testing 
accuracy of trained networks is shown in Figs. 4-6. 

 
Figure 3: Network training cycles 

 
Table 4: Performance of optimized network 

 

 R2 RMS 
(gm/kWh) 

Mean 
Error (%) 

Training 0.999998 0.040 0.090 
Validation 0.999996 0.223 0.207 
Test 0.999931 0.242 0.224 
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Figure 4: R2 value of test for different algorithms with 

increasing number of hidden layer. 
 
The performances of GD and GDM were not in 
satisfactory level and the statistical values were out of the 
range for Figs. 5-6. The accuracies of algorithms RP, 
GDX and SCG have shown good result but not consistent 
with hidden neurons. LM algorithm has shown good 

performance accuracy and consistency with changing 
number of hidden neurons. The best network was found 
to be the LM algorithm with 10 hidden neurons. In Table 
4, the statistical values of the outputs for this algorithm 
have been shown for the training, validation and testing 
data. The actual and predicted outputs of training and 
testing have been shown graphically in Figs. 7-8. The 
ANN predictions for the BSFC yield a mean relative 
error of 0.224%, a root mean square error of 0.242 
gm/kWh and a correlation coefficient of 0.999931. These 
values show that the ANN predicts the BSFC quite well 
despite wide ranges of operating conditions. It is clear 
that the performance of the ANN would have been even 
better, if a higher number of test runs had been 
performed to provide a larger amount of experimental 
data for the network training. 
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Figure 5: RMS value of test for different algorithms with 

increasing number of hidden layer. 
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Figure 6: Mean percentage error of test for different 
algorithms with increasing number of hidden layer 
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Figure 7:  Comparison of actual and predicted values for 

BSFC of training data 
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Figure 8: Comparison of actual and predicted values for 

BSFC test data. 
 
The formulations of the outputs obtained from the 
weights are given using Eqs. 5–6. 
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Where Fi  = ( i = 1,2,3…….10) can be calculated  according to
equation (7). 
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Where Ei  is the weighted sum of the of the input and is given by
equation as seen in the Tables 5. 

 

Table 5. The weights (C) between input layer and hidden 
layer for BSFC 

 
Ei = C1Tht + C2Ns + C3 φ + C4T + C5i 

C1 C2 C3 C4 C5

1 -2.8529 7.5086 -21.2481 -4.057 8.8613 
2 2.7587 -4.0614 0.9233 10.9504 -5.2455 
3 -10.0031 -1.9646 -26.0019 6.8492 5.1912 
4 2.6867 8.1041 -32.6024 -2.9196 8.9578 
5 -4.6516 5.9319 -14.4598 8.387 -0.2843 
6 3.8218 -7.2814 7.8886 -13.59 6.5203 
7 -5.2524 -7.9815 28.3589 4.1564 0.4495 
8 6.7635 -4.7433 28.1554 1.8058 -8.1378 
9 -4.5086 8.1115 19.0278 2.344 -8.1517 

10 4.3511 -7.246 -26.3438 -5.1709 11.8424 

 

7. CONCLUSION 
 
The aim of this paper has been to show the possibility of 
using the neural networks for predictions of dual fuel 
engine performance. The network produces the predicted 
results of brake specific fuel consumption parallel to the 
experimental ones. The RMS error values are smaller 
than 0.05 gm/kWh, R2 values are about 0.9999 and mean 
error smaller than 0.25%, which may easily be 
considered within the acceptable range. A back 
propagation (BP) neural network model with GD, RP, 
LM, GDM, GDX and SCG algorithms have been studied 
in single hidden layer. Number of neurons on hidden 
layer also varied to optimize network. In most cases, the 
best results were obtained from the LM algorithm. On the 
other hand GD and GDM algorithoms showed very poor 
prediction performance.  The overall results show that 
the networks can be used as an alternative for predicting 
the performances of CNG fueled internal combustion 
engine. 

The result of this study shows that ANN has ability to 
learn and generalize a wide range of experimental 
conditions. Therefore, the usage of ANNs may be highly 
recommended to predict the engine performance instead 
of having to undertake complex and time-consuming 
experimental studies. 
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