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ABSTRACT  

 

The fluid flows and heat transfer induced by the combined 

effects of mechanically driven lid and buoyancy force 

within a rectangular cavity is investigated in this paper 

numerically. The horizontal walls of the enclosure are 

insulted while the right vertical wall is maintained at a 

uniform temperature higher than the left vertical wall. In 

addition, it contains a heat conducting horizontal circular 

block in its centre. The governing equations for the problem 

are first transformed into a non-dimensional form and the 

resulting nonlinear system of partial differential equations 

are solved by using the finite element formulation based on 

the Galerkin method of weighted residuals. The analysis is 

conducted by observing the variations of streamlines and 

isotherms for different Reynolds number and Prandtl 

number ranging from 50 to 200 and from 0.071 to 3.0 

respectively. The results indicated that both the streamlines 

and isotherms strongly depend on the Reynolds number and 

Prandtl number. Moreover, the results of this investigation 

are also illustrated by the variations of average Nusselt 

number on the heated surface and average fluid temperature 

in the enclosure. 

Keywords: Mixed convection, Galerkin method, Circular 

block and Enclosure. 

NOMENCLUTURE 

B0 magnetic induction (Wb/m
2
) 

Cp Specific heat of fluid at constant pressure 

D block of diameter 

g gravitational acceleration (ms
-2

) 

Gr Grashof number 

h convective heat transfer coefficient(Wm
–2

K
–1

) 

Ha Hartmann number 

J Joule heating parameter 

kf thermal conductivity of the fluid (Wm
-1

K
-1

) 

ks thermal conductivity of the solid (Wm
-1

K
-1

) 

K solid fluid thermal conductivity ratio 

L length of the cavity (m) 

Nu average Nusselt number 

p dimensional pressure (Nm
-2

) 

P dimensionless pressure 

Pr Prandtl number 

Ra Rayleigh number 

Re Reynolds number 

Ri Richardson number 

T dimensional temperature(K) 

∆T temperature difference (K) 

u, v dimensional velocity components (ms
-1

) 

U, V dimensionless velocity components 

U0 lid velocity 

V  cavity volume (m
3
) 

x, y Cartesian coordinates (m) 

X, Y dimensionless cartesian coordinates 

 

Greek symbols 

α thermal diffusivity (m
2
s

-1
) 

β thermal expansion coefficient (K
-1

) 

ν kinematic viscosity (m
2
s

-1
) 

θ dimensionless temperature 

μ dynamic viscosity (m
2
s

-1
) 

ρ density of the fluid (kgm
-3

) 

σ fluid electrical conductivity (Ω
-1

.m
-1

) 

ψ stream function 

Subscripts 

av average 

h heated wall 

c cold wall 

s solid 

 

1. INTRODUCTION 

1.1 Literature Review 

Flow and heat transfer phenomena in lid-driven enclosures 

caused by the conjugate effect of buoyancy and shear forces. 

Mixed convection flow and heat transfer in lid-driven 

enclosures have been receiving a considerable attention in 

the literature. Conjugate mixed convection heat transfer has 
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possible applications in many engineering and natural 

processes. Such applications include cooling of electronic 

devices, lubrication technologies, drying technologies, food 

processing, and flow and heat transfer in solar ponds, 

thermal –hydraulics of nuclear reactors etc. Flow and heat 

transfer from obstructed enclosures are often encountered in 

many engineering applications to enhance heat transfer such 

as micro-electronic device, flat plate solar collectors, and 

flat-plate condensers in refrigerator etc. This kind of 

problems was investigated mostly for the case of natural 

convection in enclosures. Roychowdhury et al. (2002) 

analyzed the natural convective flow and heat transfer 

features for a heated cylinder kept in a square enclosure with 

different thermal boundary conditions. Dong and Li (2004) 

and Hasanuzzaman et al. (2007) studied conjugate of natural 

convection and conduction in a complicated enclosure. The 

authors investigated the influences of material character, 

geometrical shape and Rayleigh number on the heat transfer 

in overall concerned region and concluded that the flow and 

heat transfer increase with the increase of thermal 

conductivity in the solid region; both geometric shape and 

Rayleigh number affect the overall flow and heat transfer 

significantly. Hasanuzzaman et al. (2009) investigated the 

nature convection in closed cavity of refrigerator. Braga and 

Lemos (2005) numerically studied steady laminar natural 

convection within a square cavity filled with a fixed amount 

of conducting solid material consisting of either circular or 

square obstacles. The authors showed that the average 

Nusselt number for cylindrical rods is slightly lower than 

those for square rods. Lee and Ha (2005) investigated 

natural convection in a horizontal layer of fluid with a 

conducting body in the interior, using an accurate and 

efficient Chebyshev spectral collocation approach. Later on, 

the same authors Lee and Ha (2006) also studied natural 

convection in horizontal layer of fluid with heat generating 

conducting body in the interior. Kumar and Dalal (2006) 

studied natural convection around a tilled heated square 

cylinder kept in an enclosure in the range of 10
3
 ≤ Ra ≤ 10

6
. 

The authors reported detailed flow and heat transfer features 

for two different thermal boundary conditions and found 

that the uniform wall temperature heating is quantitatively 

different from the uniform wall heat flux heating.  

The cavity with moving lid has the most important 

application for these heat transfer mechanism, which is seen 

in cooling of electronic chips, solar energy collection and 

food industry etc. Numerical analysis of these kinds of 

systems can be found in many literatures. Moallemi and 

Jang (1992) investigated mixed convective flow in a bottom 

heated square lid-driven cavity. The authors studied the 

effect of Prandtl number on the flow and heat transfer 

process. They found that the effects of buoyancy are more 

pronounced for higher values of Prandtl number and also 

derived a correlation for the average Nusselt number in 

terms of the Prandtl number, Reynolds number and 

Richardson number. Aydin and Yang (2000) numerically 

studied mixed convection heat transfer in a two-dimensional 

square cavity having an aspect ratio of 1. In their 

configuration the isothermal sidewalls of the cavity were 

moving downwards with uniform velocity while the top wall 

was adiabatic. Oztop and Dagtekin (2004) investigated 

numerically steady state two-dimensional mixed convection 

problem in a vertical two-sided lid-driven differentially 

heated square cavity.  

A combined free and forced convection flow of an 

electrically conducting fluid in cavities in the presence of a 

magnetic field is of special technical significance because of 

its frequent occurrence in many industrial applications such 

as geothermal reservoirs, cooling of nuclear reactors, 

thermal insulations and petroleum reservoirs. These types of 

problems also arise in electronic packages, microelectronic 

devices during their operations. Garandet et al. (1992) 

studied natural convection heat transfer in a rectangular 

enclosure with a transverse magnetic field. Rudraiah et al. 

(1995a) investigated the effect of surface tension on 

buoyancy driven flow of an electrically conducting fluid in a 

rectangular cavity in the presence of a vertical transverse 

magnetic field to see how this force damps hydrodynamic 

movements. At the same time, Rudraiah et al. (1995b) also 

studied the effect of a magnetic field on free convection in a 

rectangular enclosure. The problem of unsteady laminar 

combined forced and free convection flow and heat transfer 

of an electrically conducting and heat generating or 

absorbing fluid in a vertical lid-driven cavity in the presence 

of a magnetic field was formulated by Chamkha (2002). 

Recently, Rahman et al. (2009a) studied MHD mixed 

convection around a heat conducting horizontal circular 

cylinder placed at the center of a rectangular cavity along 

with joule heating. Very recent, the effect of a heat 

conducting horizontal circular cylinder on MHD mixed 

convection in a lid-driven cavity along with joule heating is 

investigated by Rahman et al. (2009b). The authors 

concluded the streamlines and isotherms strongly depend on 

the size and locations of the inner cylinder, but the thermal 

conductivity of the cylinder has significant effect only on 

the isothermal lines. 

1.2 Objectives of the Present Study 

In this paper, the effect of Reynolds and Prandtl number on 

MHD mixed convection in a lid-driven rectangular cavity 

along with a heat conducting circular block is to analyze 

using Finite Element technique. From the literature review it 

is clearly seen that no work has been paid on such research 

interest. 

2. PHYSICAL DOMAIN 

The configuration under study with the system of co-

ordinate is sketched in Figure 1. Fluid flows and heat 

transfer modeled in a two-dimensional rectangular lid-

driven cavity of length L with a heat conducting horizontal 

circular block of diameter D = 0.2, placed at the centre of 

the cavity. The left wall of the cavity is set to move upward 

on its own plane at a velocity U0. Horizontal walls of the 

cavity are insulated while the left and right vertical walls are 

isothermal but the temperature of the right wall is higher 
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than that of the left wall. The fluid permeated by a uniform 

external magnetic field B0. The resulting convective flow is 

governed by the combined mechanism of driven (share and 

buoyancy) force and the electromagnetic retarding force. 

The magnetic Reynolds number is assumed to be small so 

that the induced magnetic field produced by the motion of 

the electrically conducting fluid is negligible compared to 

the applied magnetic field B0. The density variation 

considered only in the body force term according to the 

Boussinesq approximation. In addition, joule heating is 

considered, but pressure work, radiation and viscous 

dissipation are supposed to be negligible. All solid 

boundaries are assumed to be rigid no-slip walls. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Schematic representation of the physical model 

with boundary conditions 

 

2.1 Mathematical Modeling  

The flow of enclosed fluid is considered to be tow-

dimensional, steady, incompressible and laminar. In 

addition, the electrically conducting fluids are assumed to be 

Newtonian with all the fluid properties taken as except for 

the density variation with temperature for Boussinesq 

approximation. The governing equations for the system of 

enclosed fluid are the expression for the conservation of 

mass, momentum and energy transport at every point of the 

system within the limit of basic assumptions and the use of 

appropriate boundary conditions. Moreover, the equation of 

continuity and u-momentum equation remain unchanged, 

but the equation of v-momentum is modified from 

Maxwell’s field equation and Ohm’s law. On the other hand, 

the equation of energy is modified due to joule heating 

considered in the cavity.  

The governing equations are non-dimensionalzed to yield 

The continuity equation 

0
U V

X Y

 
 

 
     (1) 

The momentum equations 

2 2

2 2

1U U P U U
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     
     

      

  (2) 
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       

      

 (3) 

The thermal energy transport equation 

2 2
2

2 2

1
U V J V

X Y Re Pr X Y

       
    

     

  (4) 

For the solid circular block 

2 2

2 2
0s s

X Y

  
 

 
     (5) 

The following non-dimensional variables are used in the 

above equations. 

 
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,
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

 

    

 
 

 

 

The dimensionless parameters that have been appeared in 

the above equations are: 

0Re U L  , 3 2Gr g TL   , 2Ri Gr Re ,

2 2 2
0Ha B L  , Pr   , 

2
0 0 pJ B LU C T   , 

s fK k k  

Here Re , Gr, Ri, Ha and Pr are the familiar Reynolds, 

Grashof, Richardson, Hartmann and Prandtl numbers 

respectively. We propose that J be called the Joule heating 

parameter. We also propose that K be called solid fluid 

thermal conductivity ratio.  

2.2 Boundary Conditions 

The dimensionless form of the boundary conditions, 

associated to the problem are: 

0, 1, 0U V     on the left vertical wall 

0, 0, 1U V     on the right vertical wall 

0, 0U V   on the solid surface 

0, 0, 0U V
N


  


 at the top and bottom walls 

fluid solid

sK
N N

    
   

    
 at the fluid-solid interface 

Where N is the non-dimensional distances either along X or 

Y direction acting normal to the surface. 

B0 

g 

x 

y 

 L 

Th 

U0 

Tc 

adiabatic 

 L 
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The average Nusselt number at the heated wall of the cavity 

based on the dimensionless quantities may be defined by 
1

0

Nu dY
X


 


and the average temperature of the fluid in 

the cavity is defined by /av d V V   , where V  is the 

cavity volume.  

The dimensionless stream function is defined as  

,U V
Y X

  
  
 

. 

2.3 Numerical Procedure 

The governing equations together with the boundary 

conditions are solved numerically by a Galarkin finite 

element method. The method for analyzing mixed 

convection in an obstructed vented cavity in our recent 

previous study Rahman et al. (2009c) is employed in order 

to investigate the mixed convection in an obstructed lid-

driven cavity with slight modification.  

In order to ensure the grid-independence solutions, a series 

of calculation were conducted for different grid 

distributions. The details of grid independence test are 

available in Rahman et al. (2009b).  

The accuracy of the numerical model was also checked by 

comparing the results from the present study with those 

obtained by Chamkha (2002). The comparison is well listed 

in Rahman et al. (2009a). 

3.  RESULTS AND DISSCUSSION 

The main objective of this investigation is to analyze the 

effects of Re and Pr on the flow and heat transfer in a lid-

driven cavity. The mixed convection phenomenon inside an 

obstructed lid-driven cavity is influenced by the Reynolds 

number Re, Prandtl number Pr, Richardson number Ri, 

Hartmann number Ha, Joule heating parameter J, solid fluid 

thermal conductivity ratio K. In order to focus on the effect 

of Re and Pr at the three convective regimes in the cavity, 

we assign Ha =10.0, J =1.0, K =5.0. In addition, the effect 

of cavity aspect ratio and Hartmann number on the flow and 

heat transfer characteristics have already been reported by 

Rahman et al. (2009a). Very Recent, the effect of the size, 

location and the thermal conductivity of the inner cylinder 

on the flow and heat transfer in the cavity have been 

recorded by Rahman et al. (2009b). The results are 

presented in terms of streamline and isotherm patterns at the 

three different regimes of flow, viz., pure forced convection, 

mixed convection and dominating natural convection with 

Ri = 0.0, 1.0 and 5.0 respectively. The variations of the 

average Nusselt number at the heated surface and average 

fluid temperature in the cavity are plotted for the different 

values of the parameters. In addition, the variations of the 

average Nusselt number at the heated surface are also 

decorated in tabular form. 

3.1 Effect of Reynolds number 

The effect of Reynolds number on the flow fields as 

streamlines in the cavity operating at three different values 

of Ri, while the values of Pr = 0.71 is keeping fixed 

presented in the Figure 2. As well known from the literature, 

the values of the Richardson number Ri is a measure of the 

importance of natural convection to forced convection. Left 

column of this Figure shows that the forced convection 

plays a dominant role; as a result the recirculation flow is 

mostly generated only by the moving lids at low Ri (Ri = 

0.0) and all the values of Re considered, as expected which 

is due to the upward motion of the left wall. It is also 

observed that the orientation of the core in the recirculation 

cell changes as Reynolds number Re changes. Further at Ri 

= 1.0, two counter rotating cells are developed in the cavity 

for all the values of Re, which indicates both the buoyant 

force and the shear driven force are presented in the cavity. 

In this folder at low Re = 50 the clockwise cell, which is due 

to shear driven force occupies most of the part of the cavity 

and two small anticlockwise rotating cells due to buoyant 

force are developed at the bottom and top corner in the 

cavity near the right wall. But, dramatically, the 

anticlockwise rotating cell is reduced with increasing Re. 

Moreover, Bouncy dominated streamlines are observed at Ri 

= 5.0 for different values of Re.  

The corresponding effect of the Reynolds number on 

thermal fields as isotherms at various values of Ri is shown 

in the Figure 3. From this figure, we can ascertain that for Ri 

= 0.0 and Re = 50, the isothermal lines near the hot wall are 

parallel to the heated surface and parabolic shape isotherms 

are seen at the left top corner in the cavity, which is similar 

to forced convection and conduction like distribution. It is 

also seen that isothermal lines start to turn back from the 

cold wall to the hot wall near the top wall at Ri = 0.0 and all 

values of Re due to the dominating influence of conduction 

and forced convection in the upper part of the cavity. 

Further at Ri = 1.0, both the buoyant force and the shear 

force are same order of magnitude, the isothermal lines are 

nearly parallel to the vertical walls in the cavity and 

parabolic shape isotherms at the left top corner in the cavity 

becomes negligible for the lower values of Re (Re = 50, 

100) and parabolic shape isotherms are seen at the right top 

corner in the cavity for the higher values of Re (Re = 150, 

200). Moreover, the convective distortion of isothermal lines 

start to appear at Re = 50 and Ri = 5.0. Next at Ri = 5.0 and 

Re = 100, it is seen that the isothermal lines turn back 

towards the left cold wall near the top of the cavity and a 

thermal boundary layer is developed near the left vertical 

(cold) wall due to the dominating influence of the 

convective current in the upper part of the cavity. In 

addition, at Ri = 5.0, the convective distortion in the 

isotherms become more and the thermal boundary layer near 

the cold wall becomes more concentrated with further 

increasing the values of Reynolds number due to the strong 

influence of the convective current.  
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Figure 2 Streamlines for different values of Re and Ri, 

while Pr = 0.71. 

 

The effect of Reynolds number on average Nusselt 

number Nu at the heated surface and average fluid 

temperature av in the cavity are displayed as a function 

of Richardson number at some particular Reynolds 

number in the Figure 4. It is observed that the average 

Nusselt number at the hot wall decreases very sharply in 

the forced convection dominated region and increases 

gradually in the free convection dominated region with 

increasing Ri for the higher values of Reynolds number 

Re (Re = 100, 150 and 200), but is different for the 

lowest value of Reynolds number Re (Re = 50). 

However, maximum values of Nu is found for the highest 

value of Re (Re = 200) at the aforesaid three convective 

regimes. In addition, the average fluid temperature av in 

the cavity increases smoothly for higher values of Re (Re 

= 100, 150, 200) and increases slowly for the lowest 

value of Re (Re = 50) with increasing Ri. It is also added 

that the values of av are found minimum for Re = 200 at 

the pure forced convection (Ri = 0.0) and for Re = 50 at 

the pure mixed convection (Ri = 1.0) and free convection 

dominated region. Finally, the quantitative differences of 

the values of Nu at different values of Re are documented 

in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Isotherms for different values of Re and Ri, 

while Pr = 0.71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Effect of Reynolds number Re on (i) average 

Nusselt number and (ii) average fluid temperature while 

Pr = 0.71. 
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Table 1 Variation of average Nusselt number with 

Reynolds number. 

 

Ri 

Nu 

Re = 50 Re = 100 Re = 150 Re = 200 

0.0 1.259431 1.710726 2.113681 2.440418 

1.0 1.086457 1.022651 1.120741 1.252180 

2.0 0.992551 1.064352 1.220219 1.351091 

3.0 0.973097 1.132416 1.303509 1.451683 

4.0 0.982533 1.182924 1.367189 1.526451 

5.0 0.997365 1.217358 1.410237 1.572461 

 

3.2 Effect of Prandtl number 

The effect of Prandtl number on the flow fields as 

streamlines in the cavity at three different values of Ri is 

shown in figure 5, while Re = 100.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Streamlines for different values of Pr and Ri, 

while Re = 100 

 

The flow fields for all values of Pr (Pr = 0.071, 0.71, 1.0 

and 3.0) at low Ri (= 0.0) are found to be established due to 

the shear induced force by the moving lid only. Next at Ri = 

1.0, the balance between the shear and buoyancy effect is 

manifested in the formation of two vortices inside the 

cavity. It is also seen that the shear effect produces the 

clockwise vortex, which is comparatively smaller than that 

of the two-cellular counter clockwise vortex produced by 

the buoyant force. As the Richardson number increases 

further to 5.0, the heat transfer is mostly by convection in 

the cavity, as a result the two-cellular counter clockwise 

vortex become uni-cellular and large enough and the 

clockwise vortex becomes shrink in size at each values of Pr 

considered. Besides, the flows represented by the 

streamlines are almost independent of the Prandtl number at 

each Ri. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Isotherms for different values of Pr and Ri, 

while Re = 100. 

 

The effect of Prandtl number on thermal characteristics as 

isotherms in the cavity at three different values of Ri are 

shown in figure 6, while Re = 100. The isotherms at very 

low Pr (Pr = 0.071) and lower Ri (Ri = 0.0, 1.0) become 

almost parallel to the vertical walls, resembling the 

conduction like heat transfer in the cavity. A closer 

examinations also show the isothermal lines are symmetric 

about the line Y = 0.5. As Ri increases to 5.0, the symmetry 

in isotherms become disappears in the cavity. But in this 

folder the degree of distortion from the conduction heat 

transfer is very noticeable and the isotherms become more 

packed near the left top surface in the cavity at each values 

of Ri and the higher Prandtl numbers (Pr = 0.71, 1.0 and 
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3.0). The bend in isothermal lines appears due to the high 

convective current inside the cavity. Figures 7 depict the 

variations of average Nusselt number Nu at the heated wall, 

average temperature av of the fluid in the cavity at various 

values of Pr and Ri. It is shown that, for the lowest Pr the 

average Nusselt number decreases gradually with increasing 

Ri and for the higher Pr (Pr = 0.71 and 1.0) the values of Nu 

decreases with increasing Ri in the forced convection 

dominated region and increases gradually with Ri in the free 

convection dominated region. But for the highest Pr (Pr = 

3.0), it is seen that the values of Nu decreases sharply with 

increasing Ri in the forced convection dominated region and 

increases smoothly up to Ri  1.8, after then Nu is 

independent of Ri. In addition, maximum values of Nu are 

found for the highest value of Pr at all values of Ri. 

Moreover, the average fluid temperature av in the cavity 

increase smoothly for higher values of Pr (Pr = 0.71, 1.0 

and 3.0) and increases gradually for the lowest value of Pr 

(Pr = 0.071) with increasing Ri. On the other hand, 

minimum values of av are found at the highest Pr (Pr = 3.0) 

in the forced convection dominated region and at the lowest 

value of Pr (Pr = 0.071) in the free convection dominated 

region. Lastly, the quantitative differences of the values of 

Nu at different values of Pr are tabulated in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Effect of Pr on (i) average Nusselt number and 

(ii) average fluid temperature, while Re = 100. 

Table 2 Variation of average Nusselt number with 

Prandtl number. 

 

Ri 

Nu 

Pr = 0.071 Pr = 0.71 Pr = 1.0 Pr = 3.0 

0.0 1.039148 1.710726 2.041835 3.136956 

1.0 1.024186 1.022651 1.071852 1.422283 

2.0 0.986682 1.064352 1.136079 1.623106 

3.0 0.929720 1.132416 1.203577 1.616093 

4.0 0.857280 1.182924 1.262789 1.619037 

5.0 0.773427 1.217358 1.311545 1.642432 

 

4. CONCLUSION 

The present study investigates numerically the 

characteristics of a two dimensional MHD mixed-

convection problem in a lid-driven square cavity with a heat 

conducting horizontal solid circular block. To simulate the 

flow and heat transfer in the cavity, Finite Element Method 

is implemented here. A detailed analysis for the distribution 

of streamlines, isotherms, average Nusselt number at the 

heated surface and average temperature of the fluid are 

carried out to investigate the effect of the Reynolds number 

and Prandtl number on the fluid flow and heat transfer in the 

cavity for different Richardson numbers in the range of 0.0 

 Ri  5.0. The following conclusions are made: 

 Reynolds number Re has a great significant effect on the 

streamlines and isotherms at the three convective regimes. 

Buoyancy-induced vortex in the streamlines increased and 

thermal layer near the cold surface become thin and 

concentrated with increasing Re. Reynolds number Re has 

also a great significant effect on the average Nusselt 

numbers, Nu and the average temperature, av in the cavity. 

 The influence of Prandtl number on the streamlines in 

the cavity is found insignificant for all the values of Ri, 

whereas the influence of Pr on the isotherms is remarkable 

for different values of Ri. In addition, for lower values of Pr 

the heat transfer is dominated by conduction and it become 

reduces with increasing Pr. The average Nusselt number is 

always superior for the larger values of Pr. The average 

temperature of the fluid in the cavity is inferior for Pr = 3.0 

in the forced convection dominated region, also for Pr 

=0.071 in the free convection dominated region.  
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