organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2'-[Nonane-1,9-diylbis(nitrilomethylidyne)]diphenol

Norbani Abdullah, Kong Mun Lo, Hairul Anuar Tajuddin, Jia Ti Tee and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 24 November 2008; accepted 26 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.040; wR factor = 0.177; data-to-parameter ratio = 18.2.

In the title Schiff base compound, $C_{23}H_{30}N_2O_2$, the complete molecule is generated by crystallographic twofold symmetry, with one C atom lying on the rotation axis. The nonane chain adopts a linear conformation and the hydroxy group forms an intramolecular $O-H \cdots N$ hydrogen bond to the imine group.

Related literature

For the effect of alkyl length on the optical properties of 2,2'-[alkyl-1,9-diylbis(nitrilomethylidyne)]diphenols, see: Kawasaki *et al.* (1996, 1999). For the reduction of the Schiff base to the secondary diamine, see: Csaszar (1984). For the structure of 2,2'-[hexane-1,6-diylbis(nitrilomethylidyne)]diphenol, see: Sheikhshoaie & Sharif (2006).

Experimental

Crystal data

 $C_{23}H_{30}N_2O_2$ $M_r = 366.49$ Monoclinic, C2/c a = 43.6905 (10) Åb = 4.7258 (1) Åc = 9.8928 (2) Å $\beta = 96.935 (2)^{\circ}$ $V = 2027.65 (8) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: none
8930 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.177$ S = 1.102317 reflections 127 parameters 1 restraint $\mu = 0.08 \text{ mm}^{-1}$ T = 100 (2) K $0.40 \times 0.03 \times 0.02 \text{ mm}$

2317 independent reflections 1573 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.86 (1)	1.81 (2)	2.5755 (19)	148 (3)

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank the Fundamental Research Grant Scheme of the Ministry of Higher Education for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2862).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Csaszar, J. (1984). Acta Phys. Chem. 30, 61.

- Kawasaki, T., Kamata, T., Ushijima, H., Kanakubo, M., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 193–198.
- Kawasaki, T., Kamata, T., Ushijima, H., Murata, S., Mizukami, F., Fujii, Y. & Usui, Y. (1996). *Mol. Cryst. Liq. Cryst.* 286, 579–584.
- Sheikhshoaie, I. & Sharif, M. A. (2006). *Acta Cryst.* E62, 03563–03565.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, o2494 [doi:10.1107/S1600536808039858]

2,2'-[Nonane-1,9-diylbis(nitrilomethylidyne)]diphenol

N. Abdullah, K. M. Lo, H. A. Tajuddin, J. T. Tee and S. W. Ng

Comment

For more details, see the Abstract. For the molecular structure, see Fig. 1. and for details of hydrogen bonding, see Table 1.

Experimental

Salicylaldehyde (0.050 mol, 6.1 g) and sodium hydroxide (0.05 mol, 2.0 g) in methanol (125 ml) was added to 1,9diaminononane (0.025 mol, 3.9 g) in methanol (125 ml). The solution was heated for 1 h. The solvent was evaporated and the product recrystallized from ethanol to yield yellow plates of (I). The rod used for data collection was cut from a plate.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxy H-atom was located in a difference Fourier map and was refined with a distance restraint of O–H = 0.84±0.01 Å.

Figures

. . .

Fig. 1. View of the molecular structure of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (1-x, y, 1/2-z).

2,2'-[Nonane-1,9-diylbis(nitrilomethylidyne)]diphenol

Crystal data	
$C_{23}H_{30}N_2O_2$	$F_{000} = 792$
$M_r = 366.49$	$D_{\rm x} = 1.201 {\rm ~Mg~m^{-3}}$
Monoclinic, C2/c	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 2058 reflections
<i>a</i> = 43.6905 (10) Å	$\theta = 2.8 - 27.9^{\circ}$
b = 4.7258 (1) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 9.8928 (2) Å	T = 100 (2) K
$\beta = 96.935 \ (2)^{\circ}$	Rod, yellow
$V = 2027.65 (8) \text{ Å}^3$	$0.40\times0.03\times0.02~mm$
<i>Z</i> = 4	

Data collection

Bruker SMART APEX CCD diffractometer	1573 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.038$
Monochromator: graphite	$\theta_{\text{max}} = 27.5^{\circ}$
T = 100(2) K	$\theta_{\min} = 0.9^{\circ}$
ω scans	$h = -56 \rightarrow 56$
Absorption correction: None	$k = -6 \rightarrow 6$
8930 measured reflections	$l = -12 \rightarrow 12$
2317 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.177$	$w = 1/[\sigma^2(F_o^2) + (0.1065P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.001$
2317 reflections	$\Delta \rho_{\text{max}} = 0.25 \text{ e} \text{ Å}^{-3}$
127 parameters	$\Delta \rho_{min} = -0.23 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
01	0.63065 (3)	0.8920 (3)	0.86876 (12)	0.0364 (4)	
H1	0.6186 (5)	0.787 (5)	0.816 (2)	0.075 (8)*	
N1	0.61425 (3)	0.4953 (3)	0.69663 (13)	0.0283 (4)	
C1	0.66008 (4)	0.8348 (4)	0.84965 (15)	0.0300 (4)	
C2	0.68388 (4)	0.9845 (4)	0.92417 (17)	0.0382 (5)	
H2	0.6793	1.1251	0.9874	0.046*	
C3	0.71405 (4)	0.9284 (4)	0.90596 (19)	0.0410 (5)	
Н3	0.7302	1.0303	0.9577	0.049*	
C4	0.72134 (4)	0.7262 (4)	0.81367 (19)	0.0388 (5)	
H4	0.7422	0.6916	0.8009	0.047*	
C5	0.69785 (4)	0.5759 (4)	0.74073 (18)	0.0344 (4)	
Н5	0.7027	0.4358	0.6779	0.041*	
C6	0.66712 (4)	0.6252 (3)	0.75711 (15)	0.0281 (4)	
C7	0.64264 (4)	0.4541 (4)	0.68374 (15)	0.0282 (4)	
H7	0.6480	0.3082	0.6249	0.034*	
C8	0.59137 (4)	0.3110 (4)	0.62109 (16)	0.0295 (4)	

H8A	0.5792	0.2140	0.6854	0.035*	
H8B	0.6020	0.1649	0.5720	0.035*	
C9	0.56994 (4)	0.4833 (4)	0.51955 (16)	0.0290 (4)	
H9A	0.5590	0.6250	0.5696	0.035*	
H9B	0.5824	0.5867	0.4584	0.035*	
C10	0.54637 (4)	0.2996 (4)	0.43422 (16)	0.0295 (4)	
H10A	0.5351	0.1845	0.4957	0.035*	
H10B	0.5573	0.1683	0.3786	0.035*	
C11	0.52325 (3)	0.4723 (4)	0.34047 (16)	0.0278 (4)	
H11A	0.5347	0.5929	0.2818	0.033*	
H11B	0.5119	0.5990	0.3968	0.033*	
C12	0.5000	0.2941 (5)	0.2500	0.0291 (5)	
H12A	0.4888	0.1707	0.3082	0.035*	0.50
H12B	0.5112	0.1707	0.1918	0.035*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0363 (8)	0.0429 (8)	0.0299 (7)	0.0016 (6)	0.0041 (5)	-0.0045 (5)
N1	0.0256 (8)	0.0366 (8)	0.0213 (7)	0.0014 (6)	-0.0026 (5)	0.0018 (6)
C1	0.0343 (10)	0.0354 (9)	0.0194 (7)	0.0001 (7)	-0.0007 (7)	0.0058 (7)
C2	0.0489 (12)	0.0379 (10)	0.0259 (8)	-0.0070 (8)	-0.0036 (8)	0.0002 (8)
C3	0.0395 (11)	0.0436 (11)	0.0361 (10)	-0.0118 (8)	-0.0115 (8)	0.0069 (8)
C4	0.0286 (10)	0.0441 (11)	0.0415 (10)	-0.0031 (8)	-0.0053 (8)	0.0083 (8)
C5	0.0307 (10)	0.0396 (10)	0.0318 (9)	0.0013 (7)	-0.0006 (7)	0.0039 (7)
C6	0.0298 (9)	0.0331 (9)	0.0204 (7)	0.0006 (7)	-0.0018 (6)	0.0055 (6)
C7	0.0281 (9)	0.0352 (9)	0.0204 (7)	0.0029 (7)	-0.0008 (6)	0.0019 (6)
C8	0.0251 (9)	0.0352 (9)	0.0269 (8)	0.0007 (7)	-0.0017 (7)	0.0005 (7)
C9	0.0238 (9)	0.0354 (9)	0.0266 (8)	0.0014 (7)	-0.0018 (7)	0.0002 (7)
C10	0.0238 (9)	0.0334 (9)	0.0302 (8)	0.0020 (6)	-0.0012 (7)	-0.0005 (7)
C11	0.0231 (8)	0.0332 (9)	0.0265 (8)	0.0013 (6)	0.0005 (6)	-0.0006 (6)
C12	0.0230 (12)	0.0327 (12)	0.0306 (11)	0.000	-0.0010 (9)	0.000

Geometric parameters (Å, °)

O1—C1	1.349 (2)	C8—C9	1.524 (2)
O1—H1	0.86 (1)	C8—H8A	0.9900
N1—C7	1.277 (2)	C8—H8B	0.9900
N1—C8	1.461 (2)	C9—C10	1.522 (2)
C1—C2	1.393 (2)	С9—Н9А	0.9900
C1—C6	1.408 (2)	С9—Н9В	0.9900
C2—C3	1.377 (3)	C10—C11	1.523 (2)
С2—Н2	0.9500	C10—H10A	0.9900
C3—C4	1.385 (3)	C10—H10B	0.9900
С3—Н3	0.9500	C11—C12	1.524 (2)
C4—C5	1.378 (2)	C11—H11A	0.9900
C4—H4	0.9500	C11—H11B	0.9900
C5—C6	1.391 (2)	C12—C11 ⁱ	1.524 (2)

supplementary materials

С5—Н5	0.9500		C12—H12A		0.9900
C6—C7	1.462 (2)		C12—H12B		0.9900
С7—Н7	0.9500				
C1—O1—H1	109.1 (19)		С9—С8—Н8В		109.6
C7—N1—C8	118.06 (14)		H8A—C8—H8B		108.1
O1—C1—C2	119.15 (16)		С10—С9—С8		112.43 (14)
O1—C1—C6	121.25 (15)		С10—С9—Н9А		109.1
C2—C1—C6	119.60 (16)		С8—С9—Н9А		109.1
C3—C2—C1	119.86 (17)		С10—С9—Н9В		109.1
С3—С2—Н2	120.1		С8—С9—Н9В		109.1
C1—C2—H2	120.1		Н9А—С9—Н9В		107.9
C2—C3—C4	121.26 (17)		C9-C10-C11		112.75 (14)
С2—С3—Н3	119.4		C9-C10-H10A		109.0
С4—С3—Н3	119.4		C11-C10-H10A		109.0
C5—C4—C3	118.99 (18)		C9-C10-H10B		109.0
C5—C4—H4	120.5		C11-C10-H10B		109.0
C3—C4—H4	120.5		H10A-C10-H10B		107.8
C4—C5—C6	121.38 (17)		C10-C11-C12		114.05 (15)
С4—С5—Н5	119.3		C10-C11-H11A		108.7
С6—С5—Н5	119.3		C12—C11—H11A		108.7
C5—C6—C1	118.89 (15)		C10-C11-H11B		108.7
C5—C6—C7	120.52 (15)		C12—C11—H11B		108.7
C1—C6—C7	120.54 (15)		H11A—C11—H11B		107.6
N1—C7—C6	121.81 (15)		C11—C12—C11 ⁱ		112.9 (2)
N1—C7—H7	119.1		C11—C12—H12A		109.0
С6—С7—Н7	119.1		C11 ⁱ —C12—H12A		109.0
N1—C8—C9	110.26 (14)		C11—C12—H12B		109.0
N1—C8—H8A	109.6		C11 ⁱ —C12—H12B		109.0
С9—С8—Н8А	109.6		H12A—C12—H12B		107.8
N1—C8—H8B	109.6				
O1—C1—C2—C3	179.92 (15)		C2—C1—C6—C7		176.40 (14)
C6—C1—C2—C3	0.6 (2)		C8—N1—C7—C6		-179.01 (14)
C1—C2—C3—C4	0.5 (3)		C5-C6-C7-N1		-179.81 (16)
C2—C3—C4—C5	-1.1 (3)		C1-C6-C7-N1		2.8 (2)
C3—C4—C5—C6	0.6 (3)		C7—N1—C8—C9		-117.30 (16)
C4—C5—C6—C1	0.5 (2)		N1-C8-C9-C10		177.84 (13)
C4—C5—C6—C7	-176.97 (15)		C8—C9—C10—C11		175.42 (14)
O1—C1—C6—C5	179.62 (14)		C9-C10-C11-C12		177.98 (12)
C2—C1—C6—C5	-1.0 (2)		C10—C11—C12—C11 ⁱ		178.76 (15)
O1—C1—C6—C7	-3.0 (2)				
Symmetry codes: (i) $-x+1$, y, $-z+1/2$.					
Hydrogen-bond geometry (Å, °)					
D—H····A		<i>D</i> —Н	H····A	D···A	<i>D</i> —H… <i>A</i>
01—H1…N1	-	0.86 (1)	1.81 (2)	2.5755 (19)	148 (3)

