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In this study, six strengthened RC one-way slabs with different lengths and thicknesses of CFRP were 
tested and compared with a similar RC slab without CFRP. The dimensions of the slabs were1800 x 400 
x 120 mm and the lengths of CFRP used were 700, 1100, and 1500 mm, with different thicknesses of 1.2 
and 1.8 mm. The results of the experimental operation for the first crack were used to generate general 
regression neural networks (GRNNs). Concerning the limited data for training and testing, the different 
data were extracted seven times for use as training and testing data. In this case, the optimum run was 
evaluated and compared with the experimental results. The results indicate that the amount of MSE and 
RMSE was acceptable and the correlation coefficient was close to 1. 
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INTRODUCTION 
 
Due to disasters or material deprivation, the damaged 
parts of structures need to be rehabilitated and made 
stronger. CFRP has been used for the rehabilitation of 
RC structures because of its high strength and stiffness-
to-weight ratio, corrosion resistance, use in different 
points of design, easy preparation of surface before use, 
reduced duration of the construction period and the 
prolonged life after the strengthening scheme (Taljsten 
and Elfgren, 2000; Clarke and Waldron, 1996). Different 
studies have conducted independent testing on 
strengthened flat slabs using CFRP to evaluate the load 
capacity (Smith and Kim, 2008; Ola et al., 2007; Amen et 
al., 2008). Actually, all practical research requires 
considerable time for the concreting, curing, CFRP 
installation, and testing process. Therefore, a technical 
method that has practical outcomes helps us to reduce 
the time. Artificial neural networks (ANN) is a system for 
predicting practical results  with  minimum  error.  Indeed, 
 
 
 
*Corresponding author. E-mail: Vahidrazavy@yahoo.com. Tel: 
0060126631751. 

ANN demonstrates the nervous system performance 
using numerical equations to create a relationship 
between information data. In recent years, ANN has been 
applied in different parts of civil engineering such as 
inspection, design, environment, and concrete 
technology. For example, Yeh (1998), Kasperkiewics et 
al. (1995), Lai and Sera (1997), and Lee (2003), applied 
more than one hundred data to generate ANN for 
predicting concrete properties for normal and high 
performance concrete. Altun et al. (2008) applied 126 
practical data sets to make an ANN to predict the 
compression strength of lightweight concrete by using 
steel fibre]. The input data for network generation were 
steel fibre, water, water-cement ratio, cement, pumice 
sand, pumice gravel, and super plasticizer. They 
evaluated the output obtained from the ANN using the 
multi linear regression (MLR) technique based on mean 
square error, mean absolute error, and correlation 
coefficient criteria. The predicted results of ANN for 
compressive strength were carried out with a relative 
absolute mean error of 6.75%. Jamal et al. (2007) 
conducted research concerning the shear resistance of 
RC   beams   by   using   ANN.   They  used  160  and  30
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Table 1. The materials used. 
 
Steel bar Rebar T10, ( fy = 620 MPa), (Es= 215000 MPa) 
  
CFRP -Sika CarboDur –MY S 512 (width 50 mm, thickness 12 mm), (Cross section area=60 mm2) 

-Sika CarboDur –MY S 812(width 80 mm, thickness 12 mm), (Cross section area=96 mm2) 
(E = 170000 MPa) 

  
Adhesive Sikadur -30 m (Compressive, shear, and tensile strength 90, 17.5, and 28.6 Mpa, respectively, after 7 days 

curing at a temperature of 35°C.) 
  
Strain gauge for 
steel 

-Type: PFL-10-11, (Used in the centre of slab) (Length 10 mm) (Resistance 120±0.3�) 
-Cyanoacrylate adhesive for installation on the steel 
-Silicon for isolation 

  
Strain gauge for 
concrete 

-Type: PFL-30-11, (Used in the centre top of slab) (Length 30 mm)n(Resistance 120±0.3�) 
-Araldite epoxy adhesive for installation on the smooth surface of the concrete in the compressive part 

 
 
 
experimental data for training and testing, respectively, 
and the predicted data was compared with the shear 
strength predictions of ACI318 and BS8110. In another 
study, Naci et al. (2007) applied the dynamic response of 
165 different buildings for training and testing ANN and 
compared them with the results of numerical analysis. 
Mehmet (2007) developed an ANN using 237 
experimental data to predict the ultimate deformation 
capacity of RC rectangular columns. The results, when 
compared, were found to perform well. Also, ANNs have 
been used for prediction in water-related areas, including 
evaporation (Sudheer et al., 2002), water resource 
research (Ahmed et al., 2009), and hydrograph simulator 
(Lange, 1999). More than 100 data have been used to 
generate ANN for results prediction.  

In prior studies, it was found that considerable data is 
required to generate the optimum ANN for prediction. 
But, data gathering for high-scale elements of structures 
is not simple. The general regression neural networks 
method (GRNNs) is a way of generalizing results when 
the number of data for training is extremely small. 
Pannirselvan et al. (2008) utilized the GRNN system to 
generate a neural network for the analysis and 
comparison of 6 RC beams strengthened with glass FRP 
and 3 beams without GFRP. The prediction details of the 
model were close to the experimental results. 

In the current practical study, the first crack loading, 
deflection, and strain of 6 strengthened one-way RC 
slabs with different lengths, widths and thicknesses of 
CFRP were considered. The dimensions of the slab were 
2800 x 400 x 12 mm, which was subjected to two linear 
loads. The results of the experimental and analytical 
analysis of 6 strengthened slabs were evaluated by the 
RC slab without CFRP. The technical outcome for the 
first crack was utilized to generate GRNN for prediction. 

MATERIALS AND METHODS 
 
Materials  
 
The concrete mixture ratio for the cement, fine aggregate (FA), 
coarse aggregate (CA), and water were, 1: 1.47: 2.64: 0.5, 
respectively, based on the BS1881 method. The compressive 
strength of the cubic (150 x 150 x 150 mm) samples; tensile 
strength of the prismatic (100 x 100 x 500 mm) samples; and the 
elasticity of the cylindrical (150 x 300 mm) samples were measured 
in the experimental work session using 5 same samples each time. 
The mean compressive strength, tensile strength, and elasticity of 
the samples were 45.5, 6.19, and 25881 MPa, respectively. The 
steel bar used inside the concrete slab was tested for tensile stress 
and elasticity before concreting. The CFRP used, had similar 
qualities but different dimensions of the same adhesive for each of 
the specimens further mentioned. The properties of the materials 
used are shown in Table 1.  
 
 
Methods 
 
Six slabs with dimensions of 2800 × 400 × 120 mm, with an equal 
percentage of steel bars and different lengths and width of CFRP, 
as shown in Table 2 and Picture 1, were tested and compared with 
a similar sample without CFRP. Before sampling, the strain gauges 
were installed on the bending region of the steel bar and covered 
by silicon adhesive for water isolation. After casting, the samples 
were cured using gunny bags and water for 28 days. Then, the 
CFRP was attached on the tensile surface of the concrete. Finally, 
the strain gauges were attached on the CFRP and the compressive 
side of the concrete before testing. The loading and instrument 
setups are indicated in Figure 1. 
 
 
DISCUSSION 
 
Experimental results 
 
The experimental  results  for  first  crack  loading  for  the
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Table 2. The tested samples. 
 

Samples market CFRP type Steel 
CFRP (mm) 

Thickness Width Length 
CFRP-1 S512 2T10 12 50 700 
CFRP-2 S512 2T10 12 50 1100 
CFRP-3 S512 2T10 12 50 1500 
CFRP-4 S812 2T10 12 80 700 
CFRP-5 S812 2T10 12 80 1100 
CFRP-6 S812 2T10 12 80 1500 
CFRP-0 WCFRP* 2T10 - - - 

 

*Without CFRP. 
 
 
 

 
 
Picture 1. RC one-way slab strengthened by different lengths and width of CFRP. 

 
 
 
different slabs are shown in Table 3 and Figures 2 to 6. 
The first crack load for CFRP-1, -2, -3, -4, -5, and -6 were 
23.52, 24.12, 24.72, 29.3, 29.58, and 30.19KN with 8, 10, 
13, 34, 35.9, and 38.74% increase in capacity, 
respectively, in comparison with the slab without CFRP 
(CFRP-0). The results indicate that by increasing the 
length and thickness of the CFRP, the first crack load will 
improve. The deflections in the first crack load were 5.94, 
5.04, 4.95, 4.7, 4.6,  and  4.46  mm  with  8,  21.8,  23.25, 

27.24, 28.8, and 31% reduction for CFRP-1, -2, -3, -4, -5, 
and -6, respectively. In the strengthened slabs, the stress 
on the steel bar, concrete, and CFRP were 1990, 567, 
and 2750 µ for CFRP-1, 1941, 573, and 2678µ for CFRP-
2, 1881, 792, and 2615 µ for CFRP-3, 2226, 661, and 
3239 µ for CFRP-4, 2201, 666, and 3199 µ for CFRP-5, 
and 2158, 982, and 3183 µ for CFRP-6, respectively. 
Indeed, by increasing the length of the CFRP, the stress 
on the  steel  bar  and  CFRP  were  decreased  and  the
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Figure 1. Loading and instrument setup. 

 
 
 

Table 3. The experimental result. 
 

Slab market 

First crack 

Crack load 
( KN) 

Crack deflection 
( _mm) 

Steel strain 

� � 

Concrete strain 

� � 

CFRP strain 

� � 

CFRP-0 21.76 6.46 2430 494 - 
CFRP-1 23.52 5.94 1990 567 2750 
CFRP-2 24.12 5.04 1941 573 2678 
CFRP-3 24.72 4.95 1881 792 2615 
CFRP-4 29.3 4.7 2226 661 3239 
CFRP-5 29.58 4.6 2201 666 3199 
CFRP-6 30.19 4.46 2158 982 3183 
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Figure 2. The first crack loading. 

 
 
 

 
 
Figure 3. The first crack deflection. 

 
 
 
stress on the compressive surface of the concrete was 
increased. As can be seen in the first crack loading, the 
load, deflection and strain were improved by increasing 
the length, thickness and width of CFRP.  
 
 
General regression neural network (GRNN) 
 
GRNN classify into  probabilistic  neural  networks  (PNN) 

Razavi et al.        2443 
 
 
 

 
 
Figure 4. First crack strain in rebar. 
 
 
 

 
 
Figure 5. First crack strain on concrete. 

 
 
 

 
 
Figure 6. First crack strain on CFRP. 
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Figure 7. A model of PNN/GRNN. 

 
 
 

Table 4. The different extracted data for network generation. 
 

Set No. Training data Testing data 
1 CFRP-0, CFRP-1, CFRP-2, CFRP-3 and CFRP-4 CFRP-5 and CFRP-6 
2 CFRP-0, CFRP-1, CFRP-3, CFRP-5 and CFRP-6 CFRP-2 and CFRP-4 
3 CFRP-2, CFRP-3, CFRP-4, CFRP-5 and CFRP-6 CFRP-0 and CFRP-1 
4 CFRP-1, CFRP-2, CFRP-3, CFRP-5 and CFRP-6 CFRP-0 and CFRP-4 
5 CFRP-0, CFRP-1, CFRP-3, CFRP-5 and CFRP-6 CFRP-2 and CFRP-4 

 
 
 
and the sample model of PNN/GRNN is given in Figure 7. 
When the data available from measurements of an 
operating system for a back propagation neural network 
is not enough, the probabilistic neural network is 
particularly useful due to its ability to connect to the 
underlying function of the data with only a few training 
samples available (Specht, 1990). This makes GRNN an 
extremely useful tool to achieve predictions and 
comparisons of system performance in practice. GRNN is 
a neural network architecture that can solve any activity 
approximation problem. GRNN networks have four layers 
which are discussed further. 
 
Input layer: For each predictor variable, one neuron is in 
the input layer. In the case of categorical variables, “n-1” 
neurons use where, “n” is the number of categories. The 
input neurons standardizes the field of the values by 
subtracting the median and dividing by the inter quartile 
range. The input neurons then send the values to each of 
neurons in the hidden layer. 
 
Hidden layer: There is one neuron for each case in the 
training information collection. The neuron supplies the 
values of the predictor variables for the case along with 
the   object  value.  The  resulting  value  will  shift  to  the 

neurons in the pattern layer. 
 
Pattern layer/summation layer: There are two neurons 
in the pattern layer. One neuron is the numerator 
summation section, and another is the denominator 
summation section. The denominator summation section 
inserts the weight values coming from each of neurons in 
the hidden layer. The numerator summation section 
applies the weight values multiplied by the real target 
value for each neuron in the hidden layer. 
 
Decision layer: The decision layer separates the value 
accumulated in the numerator summation section by the 
value in the denominator summation section and uses 
the result as the predicted target value. 
 
The learning method is similar to finding a table in a 
multidimensional space that provides a perfect fit to the 
training data. The generalization corresponds to the use 
of this multidimensional way to include the test data. Five 
sets of extracted data were considered to generate an 
optimum network. The five different attempts to extract 
data for training and testing are indicated in Table 4. For 
example, for the best generated network, set number 5, 
the predicted results of network  for  the  CFRP-2  and  -4
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Figure 8. Network response in comparison with experimental results for CFRP-2 in set number 5. 

 
 
 

 
 
Figure 9. Network response in comparison with experimental results for CFRP-4 in set number 5. 

 
 
 

Table 5. The MSE and RMSE in GRNN method. 
 
Method KN _mm 

   
MSE 0.000298 6.02E-06 8.86E-05 4.96E-05 0.001081 
RMSE 0.017255 0.002453 0.009411 0.007045 0.032886 

 
 
 
are indicated in Figures 8 and 9, respectively, and 
compared with the experimental results.  In these figures, 
the GRNN results for five parameters of analysis – 
loading, deflection, steel bar strain, strain on concrete, 
and strain on CFRP – in the first crack are shown and 
compared with the experimental results. The network 
predicted and the experimental results are close with 
minimum error and maximum correlation coefficient. In 
addition, the mean square error (MSE) and the root mean 
square error (RMSE) of the predicted results for set 
number 5 are shown in Table 5. As we see, the error for 
the constructed network is extremely low. 

The mean amount of the five extracted sets for RMSE is 
shown in Table 6.  The output results of the generated 
GRNNs produced experimental results of 2.89, 1.45, 
1.98, 1.23, and 3.45% root mean squared error for the 
first crack loading, deflection, steel bar strain, strain on 
concrete, and strain on CFRP, respectively. 
 
 
Conclusion 
 
In the current research, 6 RC slabs strengthened with 
CFRP were  compared  with  a  similar  RC  slab  without
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Table 6. The mean amount of the five extracted sets for RMSE. 
 
Error KN _mm 

   
RMSE 0.02891 0.01456 0.01981 0.012356 0.03451 

 
 
 
CFRP and the experimental results were applied to 
create a general regression neural network. In this case, 
5 different extracted data sets were tested on the 
generated network and the mean amount of 5 sets in the 
first crack analysis, were compared with the experimental 
results by determining the root mean squared error 
(RMSE). 

By increasing the length, width, and cross sectional 
area of the CFRP, which was fixed on the tensile surface 
of RC slab, the analysis parameters of the RC slab 
improved. The first crack load for, CFRP-1, -2, -3, -4, -5, 
and -6 increased 8, 10, 13, 34%, 35.9, and 38.74% in 
capacity, in comparison with the slab without CFRP 
(CFRP-0), respectively. The deflections in the first crack 
load decreased 8, 21.8, 23.25, 27.24, 28.8, and 31% for 
CFRP-1, -2, -3, -4, -5, and -6, respectively, in comparison 
with CFRP-0. In the strengthened slabs, the stress on the 
steel bar, concrete, and CFRP were 1990, 567, and 2750 
microns for CFRP-1, 1941, 573, and 2678 microns for 
CFRP-2, 1881, 792, and 2615 microns for CFRP-3, 2226, 
661, and 3239 microns for CFRP-4, 2201, 666, and 3199 
microns for CFRP-5, and 2158, 982, and 3183 microns 
for CFRP-6, respectively. Indeed, by increasing the 
length of the CFRP, the stress on the steel bar and CFRP 
were decreased and the stress on the compressive 
surface of the concrete was increased. 

General regression neural network (GRNN) was the 
analytical method used to predict the analysis parameters 
of the first crack. The generated network was tested on 
five different extracted data sets to justify the created 
method for first crack analysis prediction. The calculated 
errors for testing data were in the field 0.012356~0.03451 
for RMSE. The correlation coefficient was close to 1. 
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