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ZnO nanoparticles (ZnO-NPs) were synthesized by a new, simple sol-gel method in gelatin media

(particle size of ZnO� 30 to 60 nm). Polyurethane/ZnO nanocomposites thin films (PU/ZnO-NPs)

were prepared by mixing the ZnO-NPs into PU prepolymer. The nanocomposites were structurally

characterized using Fourier transmission infrared (FTIR) spectroscopy. The interaction between

ZnO-NPs and PU matrix is studied by analyzing the differences in C¼O region and N-H region of

FTIR spectra. The morphology of ZnO and PU/ZnO nanocomposites were assessed using

transmission electron micrograph, TEM, and field emission scanning electron microscope, FESEM,

respectively. The dielectric properties of ZnO-NPs were attributed to the interfacial and orientation

polarization. Measurement is reported for the real and imaginary parts of the ac conductivity of

ZnO-NPs in the frequency range of 10 to 106 Hz in the temperature range 298–478 K. The

experimental results are interpreted in terms of the classical correlated-barrier hopping theory. In

addition, the dielectric properties of PU/ZnO nanocomposites (0–15 vol. % filler concentration)

were analyzed with respect to frequency. Quantitative analysis based on mixing laws for two-phase

spherical dispersion system such as Lichtenecker, Maxwell, Jayasundere and Smith, and Yamada

equations was used to predict the effective permittivity accurately up to 15 vol. % of ZnO in PU

matrix. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749414]

I. INTRODUCTION

Zinc oxide (ZnO) is a promising material for many

applications such as nano-scale electronic and optoelectronic

device because of its wide band gap (Eg¼ 3.3 eV) in the near

UV spectral region and large exciton binding energy

(60 meV).1 ZnO can be made in various types of one dimen-

sional nanostructure such as nanoparticle, nanorods, nano-

tubes, and nanowires; thus it is attractive for gas and

chemical sensing,2 micro lasers, and memory arrays applica-

tions.3 Furthermore, it can be used in many other applica-

tions such as large area flat panel displays, solar cells,4

transparent conductive coatings,5 varistors, piezoelectric and

transparent electrodes, bio sensors, etc. ZnO nanostructures

have also been studied as conductive fillers in polymers with

high electrical permittivity and these nanostructures have

received increasing attention for their potential application

in high charge-storage capacitors.1

Polyurethane (PU) is a versatile polymer6 due to its micro

phase-separated structure attributed from thermodynamic

incompatibility between hard and soft segments.7,8 By com-

bining the advantages of both properties of PU (e.g., versatil-

ity, flexibility, ductility, dielectric property) and ZnO (e.g.,

rigidity, high thermal stability, strength, hardness, high refrac-

tive index) as well as large interfacial coupling between the

nano-sized particles, PU/ZnO nanocomposites have potential

industrial applications such as sensors, actuators, and inte-

grated electronic devices.

It is a common practice to functionalize the ZnO nano-

particles (ZnO-NPs) with surfactant or a coupling agent to

stabilize and render the NPs compatible with the polymer

matrix. However, in this case, the ZnO-NPs without surface

modification are used. They are compatible with PU because

there is a special interaction between PU and ZnO-NPs. The

most likely reason for the special interaction is the reaction

between the surface hydroxyl groups of the ZnO-NPs and

the isocyanate groups of the polyurethane pre-polymer.9 The

isocyanates groups react with ZnO-NPs creating strong

hydrogen bonding in the PU matrix which could improve the

compatibility between ZnO-NPs and PU, thus yielding better

dispersion.

Several literatures investigating the structural and me-

chanical properties of PU/ZnO nanocomposite have been

reported.7,9–12 In 2005, Zheng et al. have studied the disrup-

tion of self-assembly and altered mechanical behavior in PU/

ZnO nanocomposites,9 and in 2006, the same group has

reported the mechanical phase separation and mechanical

responses of polyurethane nanocomposites.7 Mishra et al.10

have studied the structural characterization, degree of

branching calculation, and structure to property correlation

study of hyperbranched polyester based PU/ZnO hybrid

coatings, whereas Mishra et al.11 explored the phase mixing

behavior of nano ZnO in PU matrix. Electrical and dielectric

properties of PU/ZnO nanocomposites have not yet been

studied in detail.

The present paper addresses the issues on the dielectric

properties of the ZnO-NPs and PU/ZnO nanocomposites by

means of experimental and theoretical approach. Compatibility

of PU matrix and ZnO by analyzing the differences in C¼O
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region and N-H region of FTIR spectra is discussed and sup-

ported by the morphology of the materials. An illustration of

the PU/ZnO nanocomposite is proposed to elucidate the micro

phase separation in PU. The frequency spectra of the complex

permittivity over a broad frequency range for the ZnO-NPs

were measured. Charge transport properties of the ZnO-NPs as

a function of temperature and frequency are also investigated.

PU/ZnO nanocomposites are the most promising embedded

capacitor material for organic substrates application.13–16

Besides, the dielectric constants of PU/ZnO composite with

various concentrations of ZnO nanoparticles were measured.

Predicting the effective permittivity of PU/ZnO nanocompo-

sites is very important for designing the composite materials

according to the end-use. Hence, the experimental data were

fitted to several theoretical equations (Lichtenecker, Maxwell,

Jayasundere and Smith, and Yamada) to find the equation use-

ful for the prediction of the effective dielectric permittivity of

the PU/ZnO nanocomposites.

II. EXPERIMENTAL PROCEDURE

A. Materials

Oleic acid (purity 99.5%) and glycerol (purity 99.5%)

were obtained from Cognis Oleochemical (M) Sdn Bhd.

(Malaysia). Phthalic anhydride, PA (P.T. Petrowida, Indone-

sia), and toluene diisocyanate, TDI (Aldrich, USA), were used

as received. Acetone (Merck, Germany) and toluene (JT

Baker, USA) were used as solvent and dried with an activated

molecular sieve overnight before use. Silicone surfactant (Air

Products, USA) and defoamer (BYK Chemie, Germany) were

used in the preparation of PU prepolymer. The ZnO nanopar-

ticles were synthesized by a new, simple sol-gel method in gel-

atin media and the particles sizes were ranging from 30 to

60 nm.17 The ZnO nano powders were dried at 130� for 24 h to

remove the absorbed water prior to any characterization or use.

B. Preparation

ZnO-NPs were prepared by dissolving zinc nitrate in

distilled water and stirred for 30 min. Meanwhile gelatin was

dissolved in distilled water and stirred to achieve a clear gel-

atin solution. Zinc nitrate solution was added to the gelatin

solution and the solution was moved to water bath at temper-

ature 80 �C. After stirring for 12 h to obtain a brown resin,

the temperature of the resin was reduced to room tempera-

ture and the resin became hard. The final product was cal-

cined as reported in Ref. 17. ZnO pellets for dielectric

measurements (diameter 13 mm and thickness 2–5 mm) were

prepared with a very small amount of polyethylene glycol

(Mw¼ 600) as binder in the NPs and compressed by apply-

ing a pressure of 500 bar in a hydraulic press.

PU nanocomposite was prepared by in situ suspension

polymerization. Polyol was prepared by using oleic acid

(400 g), glycerol (256 g), and PA (338 g).18,19 The polyol

was allowed to react with TDI in the presence of solvent (tol-

uene), surfactant, and defoamer at 80 �C over 3 h with con-

tinuous stirring. The NCO/OH ratio was maintained at 1.4.

ZnO-NPs with different weight percentage (0% to 15%)

were dispersed in acetone in an ultrasonic bath at room

temperature for 22 min to ensure homogeneous dispersion.

The dispersed ZnO-NPs were added into PU pre-polymers

and mixed ultrasonically for 30 min at 60 �C.

Glass substrates were first coated with aluminium elec-

trodes using thermal evaporator. The prepared PU/ZnO

nanocomposites solutions were spin coated to produce thin

films with thickness ranging from 300 nm to 500 nm. The

films were left in the oven overnight at 60 �C to cure and to

fully remove the solvent. The top layer of the nanocomposite

films was coated with aluminium electrodes to yield metal-

insulator-metal (MIM) structure with a 2 mm� 2 mm active

electrode area. Silver paste was used as an electrical contact.

C. Characterization

Fourier transmission infrared (FTIR) spectra of PU/ZnO

thin films were coated on dry potassium bromide (KBr) pellet

recorded on (Pelkin Elmer 2000, FTIR) spectrometer with re-

solution setting of 4 cm�1 and range of 400–4000 cm�1. Each

sample was scanned 16 times. The ZnO-NPs were character-

ized by transmission electron microscope (TEM) and the sur-

face of nanocomposites PU/ZnO-15% was examined with a

field emission scanning electron microscope (FEI Quanta

200 F FESEM). AC dielectric measurement of the nanocompo-

sites was performed with the impedance analyzer (HP 4294) in

the frequency range of 10 Hz to 106 Hz at room temperature.

III. RESULTS AND DISCUSSION

A. FTIR analysis of PU and PU/ZnO-NPs

The IR spectra of PU and PU/ZnO nanocomposites

coated on KBr disc in the zone 400–4000 cm�1 are shown in

Fig. 1(a) and the characteristic peaks are given in Table I.

The presence of ZnO is indicated by the peak at 1540 cm�1

which is overlapped by amide II zone.10

The absorption peaks in the C¼O region and N-H region

were expanded to distinguish differences in the urethane and

urea bonding of the pure PU and PU/ZnO nanocomposites

(refer to Fig. 1(b)). The absorption peaks of both regions

were increasing for all ZnO concentration. However, the in-

crement of the absorption peaks for the samples with more

than 5% was small if compared with that of below 5%. In

general, the special interaction between PU and ZnO-NPs is

because of the reaction between the surface hydroxyl groups

of the ZnO-NPs and the isocyanate groups (NCO) of the pol-

yurethane pre-polymer. The excess isocyanate in the system

is related to NCO/OH ratio of pre-polymer, where, in this

case, the NCO/OH ratio is maintained at 1.4. Ideally,

the reaction of NCO with the surface OH groups of the

ZnO-NPs occurs from the excess isocyanate (that is, �0.4

but in real cases it might be lower due to the reaction of iso-

cyanate with atmosphere moisture, contaminant, etc). The

saturation of absorption peaks in the C¼O and N-H region

above 5 wt. % is presumably because all the excess isocya-

nate was consumed by the reaction with the hydroxyl group

and reached a saturation limit.

Extend of hydrogen bonding and micro phase separation

in PU will be able to examine via analyzing the differences

in C¼O region and N-H region of FTIR spectra.20
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In order to evaluate the complex band envelopes and to

identify underlying component bands in the -NH and -C¼O

bands region, the curve fitting simulations were performed

using ORIGIN PRO 8.1 software. The N-H and C¼O bands

region were deconvoluted by considering peaks as Gaussian

with a number of iteration to get the best fit Gaussian peak as

reported in the literatures.10,11 The maximum error associ-

ated with the fit approximate to be less than 5%.

Figs. 2(a) and 2(b) represent the deconvoluted C¼O

zone and N-H zone of PU and PU/ZnO 5% films, respec-

tively. In order to test the reproducibility of the results, for

each sample with respective concentration of ZnO, three se-

ries of samples were repeated. The reproducibility of the

results was 63%. Deconvolution was performed on the

IR spectra of the composites of ZnO concentrations up to

15 wt. % and the results obtained were almost similar to PU/

ZnO 5%, thus the exemplifying analysis results on PU/ZnO

5% was tabulated as a representative.

The deconvolution of C¼O zone displays a peak at

1676 cm�1 which represents free urea, two peaks at 1737 cm�1

and 1727 cm�1 which represent free urethane for PU and the

peaks 1707 cm�1 and 1712 cm�1 represents hydrogen bonded

FIG. 1. (a) The FTIR spectra of PU and

PU/ZnO composite thin films coated on

KBr pellet and recorded at room temper-

ature; (b) absorption peaks: (i) C¼O

region (ii) N-H region of various ZnO

wt. % in the composites.

TABLE I. FTIR characteristic band of the synthesized different PU/ZnO

composites.4,5

Frequency (cm�1) Assignment

3050–3750 cm�1 NH stretching vibrations

2800–3000 cm�1 CH stretching vibrations: anti-symmetric

and symmetric stretching vibration mode

1600–1800 cm�1 Amide I: C¼O stretching vibrations

1500–1540 cm�1 Amide II: C-N stretching and dN�H þ �C�N þ �C�C

1200–1289 cm�1 Amide III, �C�N and in-plane N-H deformation

1070–1074 cm�1 C-N stretch

744 cm�1 Amide IV

054106-3 Velayutham et al. J. Appl. Phys. 112, 054106 (2012)
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urethane. As for PU/ZnO 5% composites, the peaks

1666 cm�1, 1691 cm�1, 1712 cm�1, and 1730 cm�1 represent

bonded urethane, medium to strong H-bonded urethane,

H-bonded urethane, and free urethane, respectively.9–11,20,21

The peak area was analyzed (as shown in Table II), and it is

noted that the peak area of free urethane decreases (from 55.3

to 32.9 for PU and PU/ZnO 5%, respectively) and bonded ure-

thane increases (combination area 31.2 contributed from peaks

1707 and 1712 of PU to combination area of 43.1 contributed

from peaks 1666, 1691, and 1712 of PU/ZnO 5%) with the

inclusion of ZnO. The 1707 cm�1 and 1712 cm�1 peak repre-

sent the COO� group.

As for the N-H region, the peak of 3345 cm�1 represents

H-bonded –NH (with peak area of 53.1), the peak of

3400 cm�1 represents H-bonded amide (with the peak area

of 9.7), the peak of 3500 cm�1 represents free amide (peak

area of 14.2) and 3541 cm�1 (integrated peak area of 5.9)

represents free N-H for pure PU.

As for PU/ZnO the peak of 3346 cm�1 represents

H-bonded NH type II with integrated area of 73.6 (the

FIG. 2. FTIR peak deconvolution of (a) C¼O region and (b) N-H region of PU and PU/ZnO-5% films denoted as (i) and (ii), respectively.

TABLE II. De-convoluted (a) C¼O region and (b) N-H region and its integrated peak area for pure PU and PU/ZnO composites.

PU PU/ZnO-5%

Peak (cm�1) Integrated area Peak (cm�1) Integrated area

(a) C¼O region

1676 (free urea) 7.02 1666 (H-bonded urethane) 4.64

1707 (H-bonded urethane) 25.09 1691 (medium to strong H-bonded urethane) 12.18

1737 (free urethane) 55.34 1712 (H-bonded urethane) 26.28

1712 (H-bonded urethane) 6.12 1730 (free urethane group) 32.91

1727 (free urethane) 6.41

(b) N¼H region

3345 (H-bonded NH type II) 53.09 3249 (free NH stretching zone) 14.99

3400 (H-bonded amide) 9.72 3346 (H-bonded NH type II) 73.63

3500 (free amide) 14.20 3511 (free amide) 7.79

3541 (free N-H) 6.93
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value increased compared to pure PU) and the peak of

3511 cm�1 represents free amide with integrated area of

7.8 (the value decreased). It is obvious that the NH stretch-

ing region shows increment of H-bonded peak area than

free amide.

The increment in the bonded urethane and H-bonded

NH with ZnO inclusion from the deconvolution results

suggest that the ZnO was inserted into the PU matrix and

thus accredited to the disruption of the phase separation.

Incorporation of ZnO-NPs increased the inter-chain asso-

ciation through hydrogen bonding and the result is con-

sistent with the reported literature.9–11,20–22 The reaction

between the PU and surface hydroxyl groups on the par-

ticles is the cause of the phase disruption in PU matrix.21

There are fewer hard phases formed in the composites

(compared to neat) PU due to interaction between PU pre-

polymer and the surface hydroxyl groups of ZnO-NPs

where each nanoparticle acts as a cross linker and con-

strains the polymer chain mobility, thus limits the forma-

tion of the phases. As a result, less hard phases were

formed.9 This occurrence is illustrated in schematic repre-

sentation in Fig. 3.

B. Morphology study by FESEM/TEM

Figure 4(a) shows TEM micrograph of the ZnO-NPs.

The ZnO-NPs were almost hexagonal in shape and the aver-

age initial sizes were �59 nm as evidenced by the TEM

micrographs. The surface morphology of the pure PU and

PU/ZnO nanocomposites as obtained by FESEM with 15

vol. % of ZnO-NPs filler is shown in Figures 4(c) and 4(d),

respectively.

NPs are shown as white spheres dispersed throughout

the entire area examined with smooth surface finish with

minimum porosity which indicates that the ZnO-NPs are

evenly distributed in the PU matrix. The homogeneity of the

surface indicates that there is a good compatibility between

the PU matrix and ZnO-NPs surface11 which is in agreement

to the FTIR analysis and furthermore improves the electrical

properties of the nanocomposites (which is reflected in the

dielectric study below).

C. Impedance measurement

1. ZnO-NPs

Figure 5 shows the double logarithmic plots of (a) real

and (b) imaginary components of the complex permittivity e*

against frequency, f, for the pure ZnO-NPs at various

temperatures.

The analysis of the relaxation mechanism is complicated

because of the dominant influence of conduction. In order to

separate the dc conduction and the relaxation, Havriliak-

Negami (HN) relaxation model was used23 to fit the experi-

mental result. The HN function is

e� ¼ e1 þ
De

ð1þ ðixsÞaÞb
þ Drdc

ix
1� 1

1þ ðixsif Þcif

� �
; (1)

where e1 represent the instantaneous dielectric constant,

De is the dielectric relaxation strength, s is the relaxation

time, and a and b are parameters expressing distribution of

relaxation times. The third terms correspond to the conduc-

tive relaxation due to interfacial polarization, where Drdc is

the dc conductivity, sif is the relaxation time, and cif is the

parameters which express the distribution of relaxation

times.

There are two dielectric relaxation observed in the

ZnO-NPs due to interfacial and orientation polarization. From

Eq. (1), the third term was used to fit the interfacial polariza-

tion and we found it occurs only at lower frequency (<10 Hz)

for all the temperature investigated as shown in Figure 6.

Interfacial polarization occurs because of structural inhomoge-

neity created by a large surface-to-volume ratio of grains.

ZnO-NPs pellet is an aggregate of small crystalline grains

bonded to each other and may have a number of surface

defects such as dangling bonds, vacancies, and micro-pores at

the grain boundaries. It is likely that when carriers meet

boundary, they stay there for a while until they pass through

the boundary and generate polarization. As a result, permittiv-

ity increased as the frequency decreased1,3 and the corre-

sponding results of the ZnO-NPs for 298 K and 478 K are

shown in Figure 6.

FIG. 3. Schematic representations of PU and PU/ZnO nanocomposites at room temperature: (a) phase separated morphology of pure PU due to soft and hard

segments, (b) disruption of phase separation due to ZnO incorporation in PU matrix, (c) nanoparticles in PU matrix.
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FIG. 4. TEM images of (a) ZnO nanoparticles with hexagonal shape, (b) ZnO-NPs size distribution, FESEM micrograph of (c) PU film, (d) PU/ZnO-15%.

FIG. 5. (a) Real permittivity, (b) imagi-

nary permittivity spectra of ZnO-NPs at

various temperatures.
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The orientation polarization was fitted using the first and

second terms of Eq. (1). As illustrated in Figure 6, we can

reproduce the observed spectra (open marks) very well using

Eq. (1) (solid lines). The dashed lines show the absorption

due to interfacial and orientation polarizations. The fitting

parameters for the HN model at room temperature (298 K)

and 478 K are a¼ 0.53, b¼ 0.95, sðsÞ¼ 0.0067, De¼ 150,

and a¼ 0.45, b¼ 0.95, sðsÞ¼ 1.40� 10�4 s, and De¼ 303.

Orientation polarization was observed at around 150 Hz

at room temperature and shifted to 3.5 kHz at 478 K as

shown in Figure 6. The possible source of the orientation

polarization is the existence of a number of oxygen vacan-

cies and zinc interstitials in the nanoparticles. The Zn2þ ions

and the O2� vacancies in the vicinity exchange their posi-

tions by a single jump and try to align along the direction of

the field when an external field is applied.

The frequency dependence of ac conductivity of the ZnO

pellet at various temperatures on a log-log scale is displayed

in Figure 7(a). The red line distinguishes the dc conductivity

and power law regimes. The key features of ac conductivity

characteristic of the ZnO from the figure are as follows:

(i) At high frequencies ac conductivity approximates a

power law relation

racðxÞ ¼ Axs; (2)

where x is the angular frequency, A is a constant, and

the exponent s is a frequency-dependent parameter

and has value less than unity. The ac conductivity was

acquired by subtracting dc conductivity from the

measured ac conductivity with an assumption that ac

and dc conduction processes arise due to separate

mechanism. The frequency exponent s was obtained

from the straight-line fits by the least-square fitting

procedure.

(ii) There is a gradual transition of the conductivity from

frequency-dependent at power law regime to frequency-

independent at dc conductivity dominant regime.

(iii) In addition, the conductivity is less temperature de-

pendent at the power law regime compared to the dc

conductivity regime.

The exponent s depends on x and the dependency is par-

ticularly strong at high x. The microscopic conduction

obtained from the magnitude of s as a function of tempera-

ture is shown in Figure 7(b).

ZnO shows semiconducting behaviour due to the pres-

ence of Zn2þ ions and the O2� vacancies and the dc electrical

conduction occurs by the hopping of small polarons between

these two valence states of ions. Various theories for the ac

conduction of semiconductors have been proposed in the past.

It is usually assumed the dielectric loss occurs because carrier

motion is reflected to be localized within pair of sites.24 In

principle, two distinct processes have been proposed for the

relaxation mechanism, namely quantum-mechanical tunneling

(QMT) through the barrier and classical hopping over the

barrier.24,25

FIG. 6. Real permittivity and imaginary permittivity of ZnO at room temper-

ature. The relaxations are due to interfacial and orientation polarizations.

The best fitting curves of Eq. (1) to the data are also presented.

FIG. 7. (a) Conductive spectra of ZnO-NPs at various temperatures. The red

line separates dc conductivity dominant region and power law dominant

region based on temperature variation. (b) Temperature dependence of expo-

nent s.
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The QMT theory predicts the following expression for

the ac conductivity:

rðxÞ ¼ 1

3
pN2ðEFÞa�5e2kTx ln4 1

xs0

� �
; (3)

where so is a characteristic relaxation time, N(EF) is density

of states at Fermi level, a�1 is the localization length. The

frequency exponent s for QMT theory is given by

s ¼ 1� 4
lnð 1

xso
Þ. QMT model states that s of rðxÞ is tempera-

ture independent but frequency dependent. For example, s

yields to 0.89 for x¼ 104 Hz and s0
�1 ¼ 1013 Hz which is

independent of temperature. QMT theory is in disagreement

with the temperature dependence of r (x). The experimental

values of r(x) show stronger temperature dependence (as

shown in Figure 7(a)) than predicted by QMT theory.

Alternatively, the experimental results of ZnO can be

explained in terms of classical hopping theory. A classical

model which assumes correlated barrier hopping (CBH) of

electrons was developed by Elliot25 and Pike.26 The ac con-

ductivity in CBH theory for single or bipolaron hopping is

given by

racðxÞ ¼
np3N2eeoxR6

x

24
; (4)

where e and eo are the dielectric constants of the materials

and the free space, respectively. N is the concentration of

pair sites, n is the number of electrons involved in the hop-

ping process, n¼ 1 for single polaron hopping and n¼ 2 for

bipolaron hopping, and Rx is the hopping length which can

be calculated from

Rx ¼
ne2

pee0

� �
WM þ kT ln

1

xso

� �� �
; (5)

where k is the Boltzmann constant and WM is the maximum

barrier height related to the relaxation variable W

W ¼ WM �
e2

peeoR
; (6)

where R is the intersite separation.

The temperature dependence of ac conductivity in ZnO-

NPs at various frequencies is shown in Figure 8. It is

observed that the conductivity increases with increasing tem-

perature at all frequencies. The solid lines in the Figure 8 are

the fitted parameter according to Eq. (4) with the value of

n¼ 2. Thus, the CBH theory predicts quantitatively the tem-

perature dependence of ac conductivity and its frequency

exponent for the ZnO nanoparticles. Good agreement

between the theoretical and experimental data confirmed that

the ac conductivity in the ZnO-NPs is due to CBH bipolaron

hopping.

According to CBH model, the frequency exponent s is

described as

s ¼ 1� 6kT

WM � kT ln
1

xso

� � : (7)

The solid line in the Figure 7(b) is the best fitted results

according to Eq. (7). The fitting were performed using least

square fitting technique (using ORIGIN PRO) with an assumption

of fixed frequency (x¼ 104 s�1) and the parameters, WM and

s0 obtained from the fitting are displayed in Table III. The

maximum barrier height is calculated to be 0.91 eV and the

hopping length of the polarons is �11.5 Å. The ac conductiv-

ity data are fitted in Figure 8 by using the above obtained val-

ues of WM and s0. It is noted that the fits appear to be

reasonable over the entire temperature range measured.

Moreover, the values of WM, s0, and Rw obtained from the fit-

ting are in marked agreement with the values published

for ZnO nanorods27 (WM¼ 0.92 eV, s0¼ 7.65� 10�10 s�1,

and Rw� 12.7 Å). Thus in the present investigation, the tem-

perature dependence of ac conductivity and its frequency

exponent for the ZnO nanoparticles is quite consistent with

those predicted by CBH theory described above.

2. PU/ZnO nanocomposites

Figure 9 shows double logarithmic plots of real and

imaginary components of complex permittivity e* against

frequency f for PU/ZnO nanocomposites with ZnO-NPs of 0

to 15 vol. % at room temperature. As anticipated, the incor-

poration of ZnO-NPs into PU matrix modifies the dielectric

spectra, where in all cases, the dielectric permittivity values

obtained are higher than PU but lower than that of ZnO-NPs.

The dielectric permittivity decreases as the frequency

increases from 10 Hz to 10 kHz. The increase in the effective

permittivity, eef f (the real permittivity of the composite), of

the studied frequency region is attributed to the large permit-

tivity of ZnO which enhanced the polarization from dipole-

dipole interaction of closely packed nanoparticles.

FIG. 8. Temperature dependence of ac conductivity of ZnO-NPs. The solid

line represents fitted results of Eq. (3) with n¼ 2.

TABLE III. Parameters obtained by fitting the experimental data to CBH

theory for the ZnO-NPs.

WM (eV) s0 (s) Rx (Å) N (cm�3)

0.91 7.51� 10�11 11.5 9.38� 1025
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Predicting the eef f of PU/ZnO nanocomposites is very

important for design of composite materials. In this case, the

nanocomposites can be modeled by a two phase dispersion

system consisting of continuous matrix (PU) and spherical

inclusions (ZnO-NPs). eef f of such system can be predicted

through a variety of theoretical models. These models are

derived on the basis of various theoretical assumptions and

experimental data. Figure 10 shows the room temperature

dielectric constant of the nanocomposites at 100 Hz for dif-

ferent volume fractions of ZnO. The dielectric constants cal-

culated based on the models discussed here is also included

in the Figure 10 for comparison purposes. The fitting of the

experimental results and theoretical model were accom-

plished using ORIGIN PRO 8.1. The Lichtenecker logarithmic

law of mixing has been widely used for composite of two

components

log eef f ¼ ð1� /Þ log e1 þ / log
e2

e1

; (8)

where e1 and e2 represent the dielectric permittivity of the

polymer matrix (PU) and the ceramic inclusion (ZnO-NPs),

respectively, and / is the volume fraction of the inclusion.

The mixing law is the intermediate form of series and paral-

lel combination laws for dielectric mixture. This mixture law

can be applied only if e1 differs slightly from e2.28

Another theoretical model which is widely used to pre-

dict dielectric constant between the permittivity of the vari-

ous phases is Maxwell29 model where the contrast between

the permittivities of the phases is not very large. The effec-

tive dielectric constant based on Maxwell model is given as

in Eq. (9).

eef f ¼ e1

2e1 þ e2 þ 2/ðe2 � e1Þ
2e1 þ e2 � /ðe2 � e1Þ

� �
: (9)

Effective permittivity may also be calculated from

Jayasundere-Smith equation30 (Eq. (10)), which was devel-

oped from Kerner’s equation. Jayasundere and Smith applied

a finite element model for two spheres having the same ra-

dius and this model is only valid when e2� e1

eef f ¼
ð1� /Þe1 þ /e2

3e1

e2 þ 2e1

� �
1þ 3/ e2 � e1ð Þ

e2 þ 2e1ð Þ

� �

1� /ð Þ þ /
3e1

e2 þ 2e1

� �
1þ 3/ e2 � e1ð Þ

e2 þ 2e1ð Þ

� � : (10)

In addition to mixing rules suggested above, there are

also mixing formulae which contain adjustable parameters

which takes into consideration the morphology of the par-

ticles. Yamada and his coworkers have proposed a model for

binary system consist of lead zirconate titanate, PZT powder

embedded in a polymer matrix of polyvinylidene fluoride,

PVDF.31 Dielectric constant of the composites based on

Yamada equation is given by

eef f ¼ e1 1þ / e2 � e1ð Þ
e1 þ n e2 � e1ð Þ 1� /ð Þ

� �
; (11)

where n(¼1/g) is the morphology fitting constant, corresponds

to the shape of ellipsoidal particle and their orientation in rela-

tion to composite film surface material. The value of n is

greatly affected by the change in the morphology factor.

Comparison between the experimental value and the

theoretical models show that all the models mentioned above

are in good agreement with the experimental data only up to

/ ¼ 0:03 of ZnO-NPs. Above / ¼ 0:03, the Jayasundere-

Smith and Maxwell are not suitable to predict eef f because

the theoretical data deviate (�>8% deviations) from the ex-

perimental value.

As for Lichtenecker equation, eef f of PU/ZnO nanocom-

posite is linearly proportional to / up to 0.10 but there is a

deviation of �13% for /¼ 0.15. Lichtenecker equation

FIG. 9. Dielectric spectra of PU/ZnO nanocomposites with 0 to 15 vol. % of

filler concentration at room temperature.

FIG. 10. Variation of effective dielectric constant (eeff) measured at room

temperature and 100 Hz of PU/ZnO nanocomposites as a function of volume

fraction of ZnO-NPs. The circles are experimental data and the solid lines

are fit from various model.
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appears to be useful for predictions of eef f for PU/ZnO nano-

composites with the limitation up to /¼ 0.10.

As for Yamada model, the experimental values fit well

with the shape parameter of n¼ 0.19 for the entire volume

fraction of ZnO studied in the present study. For instance,

the value of eeff (6.78) for �¼ 0.15 is comparable to the ex-

perimental eeff (6.53).

The goal of this investigation was to devise a model that

can accurately account for the dielectric properties of the

PU/ZnO thins films particularly at definite volume fraction

with parameters of clear physical meaning. The observations

clearly demonstrate the effective applicability of Yamada

model to rationalize the dielectric characteristics of the pres-

ent composite up to 0.15 filler content.

IV. CONCLUSIONS

ZnO-NPs and the nanocomposite thin films of PU/ZnO

with ZnO-NP content of 0%–15% were characterized. Mor-

phology and structures of the prepared samples were ana-

lyzed through TEM, SEM, and FTIR. The FTIR results

indicated that hydroxyl groups on ZnO-NPs reacted with iso-

cyanates groups, thus improve the compatibility between

ZnO and the polyurethane matrix. The dielectric relaxation

mechanism of ZnO was due to interfacial polarization at

lower frequencies and orientational polarization at higher

frequencies. The dielectric constant of ZnO-NPs increased

with increasing temperature. The ac conductivities were ana-

lyzed through power law relation. The transport behaviour of

the ZnO-NPs have been investigated and compared with the-

oretical models. Bipolaron hopping CBH model is an appro-

priate mechanism for the AC conductivity in the temperature

range inspected. As for the PU/ZnO nanocomposites, the

inclusion of ZnO-NPs on the PU matrix significantly

increases the effective dielectric permittivity of the nano-

composites. Various models are used for rationalizing the

dielectric behaviour of the nanocomposites. Among them,

the Yamada equation gives a satisfactory prediction for the

effective permittivity of these nanocomposites over the fre-

quency range up to 15 vol. % of inclusion.
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