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Abstract: This work presents an experimental study of gold-DNA-gold structures in the 

presence and absence of external magnetic fields with strengths less than 1,200.00 mT. The 

DNA strands, extracted by standard method were used to fabricate a Metal-DNA-Metal 

(MDM) structure. Its electric behavior when subjected to a magnetic field was studied 

through its current-voltage (I-V) curve. Acquisition of the I-V curve demonstrated that 

DNA as a semiconductor exhibits diode behavior in the MDM structure. The current 

versus magnetic field strength followed a decreasing trend because of a diminished 

mobility in the presence of a low magnetic field. This made clear that an externally 

imposed magnetic field would boost resistance of the MDM structure up to 1,000.00 mT 

and for higher magnetic field strengths we can observe an increase in potential barrier in 

MDM junction. The magnetic sensitivity indicates the promise of using MDM structures as 

potential magnetic sensors. 
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1. Introduction  

For several decades research on DNA material and DNA-based devices has attracted huge attention. 

In a great deal of research, electron transfer through molecular wires and DNA strands has been 

modelled as donor-bridge-acceptor systems due to the analogy between them. DNA as a molecular 

wire plays a key role in exhibition of nonlinear behaviors in I-V characteristic curves [1–6]. Once 

DNA is sandwiched between metal layers, these wires enable charge transport phenomena as a rectifier 

or transistor or switch to take place [5–8]. The important and interesting issue in DNA base device is 

their semiconductive behavior [9,10] or response in the presence of external electric and magnetic 

fields [11]. Some semiconductors, such as silicon, are fabricated under high temperature conditions. 

The provision of tunable conditions for these materials with the purpose of their utility as spintronic 

devices is difficult. But, there are other types of semiconductor like organic semiconductors whose 

preparation does not involve high temperatures. They can be synthesized at much moderate 

temperatures with low pollution and reduced toxic effects. Furthermore, their high flexibility 

guarantees tunable electronic properties. The long coherence time of bio-semiconductors is a suitable 

feature for fabrication of coupling spin-orbit devices as a spintronic component [12]. Spin transport in 

molecular systems, as a branch of electrotransitions, is of special interest but lacks thorough 

experimental investigation [13]. Several works have been conducted concerning current transport in 

DNA structures in magnetic fields but many of them are theoretical studies and still need more 

investigation as experimental research. In this regard, Petrove et al. have theoretically studied the 

influence of an external magnetic field upon a molecular wire [4,11] and in 2002, Dawei et al. reported 

the magnetic resistance of G4-DNA in a molecular device [14]. 

In this work, we demonstrate an electrical behavior of a MDM structure in an external magnetic 

field. The MDM structure as a back-to-back diode in gold-DNA-gold structure shows low threshold 

voltage bias in forward and large in reverse. This diode, under the influence of an external magnetic 

field, acts as a magnetic diode. The potential barrier between DNA and gold is calculated to be  

0.878 eV based on its I-V curve and Schottky’s rule. An external perpendicular magnetic field reduces 

the rate of charge transport and current through DNA strands. Based on the results, the measurements 

ascertain a good relationship between external magnetic field and current. The authors intend to exploit 

such magnetic sensitivity behavior of MDM structures in bioengineering studies and nanoelectronic 

devices. 

2. Experimental Section  

2.1. Materials 

DNA molecules with sequence A (22%), T (20%), G (35%), C (23%) from Boesenbergia rotunda 

plant were extracted using the common facilities available in most laboratories [15]. A p-type Si wafer 

(orientation <100>) possessing a resistivity of 1 to 10–20 Ω-cm (MEMC Electronic Materials) 

together with a 1,000 nm thick SiO2 layer was used as the substrate. The chromium and gold wire 

(Kurt J. Lesker Company) were used in evaporation and magnetron sputtering technique had a purity 

of 99.999%. Other necessary chemicals (NH3, H2O2, HF, HCl and acetone) were supplied by Sigma 

Aldrich and were used without further purification. Finally, the deionized water used in the 
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experiments was obtained from a Barnstead (Nanopure II) water deionizing system available in the 

laboratory. 

2.2. Fabrication of Chip 

After cleaning wafers according to the standard method (RCA) and drying by nitrogen gas (as 

shown in Figure 1(a)), the photoresist AZl512 was deposited using spin coating and UV-lithography 

through the designed mask (as shown in Figure 1(b)). After this process, chromium and then gold 

deposition on silicon substrate of 90 and 150 nm respectively was achieved by DC magnetron 

sputtering and thermal evaporation (as in Figure 1(c,d)). A lift-off process is followed as the very final 

part of an experiment (see Figure 1(e)). 

Figure 1. Schematic diagram showing the sample preparation. (a) The sample preparation. 

(RCA); (b) The photoresist deposition and UV-exposure through the mask; (c) Chorumum 

deposition; (d) Gold deposition; (e) Lift off process. 

 

2.3. Measurements 

DNA solution was first diluted to a suitable concentration of 0.01 mg/mL and allowed to flow along 

the gap between gold electrodes using a micro-syringe. Once a 70–100 µL drop of the DNA solution is 

deposited in the gap under influence of an external 200 kHz electric field (a 12 volt AC supply) for few 

second, the probability of DNA-gold contact rises. Then, a 12 volt DC supply is connected to the 

electrodes that align DNA strands parallel to the electric field. 

I-V characterization of MDM in the presence and absence of magnetic field, generated by an 

Electromagnet 3472-50, in dark conditions (inside a cryostat with light protection) was achieved using 

a semiconductor analyzer (SMU-236, Keithly) at different temperatures using a temperature controller 

Lakeshore-331 (as depicted in Figure 2).  
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Figure 2. Two electrodes L and R (L = left, R = right) with an insulator gap in the gold-

DNA-gold structure in the presence of external magnetic field is placed inside cryostat 

connected to temperature controller, semiconductor analyzer. (a) MDM; (b) Electromagnet; 

(c) Cryostat; (d) Temperature controller; (e) Semiconductor analyzer. 

 

3. Results and Discussion  

Figure 2 illustrates the setup for measuring the gold-DNA-gold in the presence of a perpendicular 

magnetic field. The sample was placed in a cryostat under the magnetic field that generated by 

electromagnet while connected to a semiconductor analyzer, and a temperature controller.  

The I-V characteristic curve for gold-DNA-gold structure in the presence of various magnetic fields 

was measured in this setup (Figure 3). The characteristic curve I-V shows rectifying behavior that 

under forward bias, current increases exponentially with low threshold voltage. DNA strands, in this 

structure, act as a semiconductor equivalent to a back-to-back diode. 

The potential barrier in this case is calculated using the metal-semiconductor contact equation 

according current-voltage-temperature and equates 0.878 eV approximately. Table 1 shows potential 

barrier (Vb) and Richardson constant (A*) in different magnetic fields.  
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Figure 3. The I-V curve for gold-DNA-gold structure in presence of various magnetic 

fields at room temperature. The subfigure shows I-V curve of the junction between the two 

electrodes in absence of DNA molecules. 

 
 

Table 1 lists variations of potential barrier obtained from I-V-T for application of magnetic fields 

with strengths less than 1,200.00 mT. Such variations are not considerable for field strengths of less 

than 1,000.00 mT, while an increase to 0.2886 eV is experienced for strength change of 800.00 to 

1,200.00 mT.  

Table 1. Potential barrier via magnetic field in gold-DNA-gold structure (Vb) and 

Richardson constant (A*) via magnetic field in gold-DNA-gold structure. 

B (mT) A* (Acm–2K–2) Vb (eV) 

0.00 110.079 0.878 
200.00 129.454 0.880 
400.00 135.014 0.882 
600.00 187.596 0.890 
800.00 204.640 0.886 

1,000.00 254.186 1.157 
1,200.00 298.586 1.175 

In other words, the effect of magnetic field (with strengths less than 1,000.00 mT) is not noticed at 

voltages lower than potential barrier and is realized as reduction of current for voltages higher than this 

value. For voltages less than potential barrier, the external field favors collisions of charge-carriers but 

the barrier confines them and therefore concentrated charges vary and deformation in the edge of 

energy band occurs. For voltages higher than potential barrier current was observed to drop with 

increase in exerted magnetic field as shown in Figure 4 for each constant voltage of 1, 2, 3, 4 and 5.0 V. 
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With increasing magnitude of the magnetic field, the arrival time for carrier from the left to the right 

electrode will decrease and the current transfer rate will decrease. 

Figure 4. The magnitude of current in constant voltages of in several magnetic fields. 

 
 

Once an external magnetic field is applied to the semiconductor, the energy levels increased 

allowing some of them to pass above the Fermi energy. In high magnetic field, the scattering 

amplitude for similar and dissimilar spins will differ [16] and the band gap will change according to 

discrete energy levels. In the presence of some low magnetic fields, the band gap does not change 

considerably. Also, the charge of material in a magnetic field will be subjected to a Lorentz force and 

Drude Theory. Electrons in partially filled bands and ions could be affected by the external magnetic 

field. A circular motion will be created with a trajectory of electron that is perpendicular to the field. 

Additionally, In Metal-DNA-Metal structures, before the charge carriers migrate from the left electrode 

to the right one, they move in a disturbed and spiral fashion to left and right for many times [14]. Such 

disturbed movements are due to the loose coupling of electrodes and DNA. In summary, an external 

magnetic field, alters the motion of carriers alongside the electric field and inhibits the reach of the 

carriers to the opposite electrode. This results in a decrease in current with respect to the case for 

absence of a magnetic field. To closer investigation of variations of current in present of magnetic 

field, differential current through MDM in presence and absence of magnetic field (I(B=0)-I(B)) 

versus voltage is illustrated in Figure 5. As seen, a gradual decline in current occurs with increase of 

field strength. It is known from this figure that in absence of magnetic field the current exceeds that of 

in its presence which results in a positive differential current in forward bias and negative in reverse. 

Therefore, the difference between the current in presence and absence of a magnetic field for greater 

magnetic fields increases and magnetic resistance rises with the field strength. 

Such a behavior can be attributed to the increased collisions between charge-carriers and rotation of 

charges under the influence of external magnetic/electric fields and an increase in resistance. For a 
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more detailed study on effective mechanism of current reduction, the saturation current versus 

magnetic field is calculated based on I-V analysis.  

Figure 5. I(B=0)-I(B) via voltage in the presence of various magnetic field for gold-DNA-

gold structure. 

 

Figure 6 shows saturation current with respect to magnetic field strength. According to this figure, 

the saturation current undergoes a sharp decline and later on, oscillatory variations emerged.  

Figure 6. Saturation current versus magnetic field in gold-DNA-gold structure. 

 

 

An exponential decay in saturation current is observed with increase of field strength up to  

1,000.00 mT. The initial decline obeys a linear relation and is due to decreasing mobility of carriers 

and decreasing A* as well, as shown in Table 1, and the exponential change in saturation current is by 
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the change in potential barrier height and the deformation of energy band in vicinity of gold-DNA 

interface.  

However, due to its synergy with charge propagation near the barrier, the effect of image charge is 

lessened so that the barrier height obtained by I-V-T curves is more than the amount of splitting energy 

levels according to the Zeeman effect. Such an effect in reduction of carriers at high voltages is noticed 

as a decrease in carrier rates and an increase in resistance.  

4. Conclusions  

We report on the fabrication of a magnetic/nonmagnetic junction of DNA strands as a magnetic 

semiconductor/metal Schottky diode on a silicon dioxide substrate. In the absence of magnetic field, 

the MDM structure behaves like a conventional diode under applied voltage and also works like  

a magnetic diode under nonzero magnetic field. The I-V characteristics were measured in vertical 

MDM configuration perpendicular magnetic fields of 0 and 1,200.00 mT. Our findings ascertain that 

the Metal-DNA-Metal structure is capable of detection of magnetic fields with strengths equal and 

greater than 1 T. The dominant mechanism for field strengths less than 1 T is variation in mobility and 

propagation of carriers. While for larger strengths, orbital disintegration adds up. The magnetic 

sensitivity of gold-DNA-gold structure as illustrated by the graphs promotes DNA based devices as 

suitable candidate for magnetic field detectors/sensors and MDM structure makes a good option in 

fabrication of magnetic diodes and sensors.  
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