

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{4-chloro-2-[2-(1H-indol-3-yl)ethyliminomethyl]phenolato- $\kappa^2 N, O$ {zinc(II)

Hapipah M. Ali, M. I Mohamed Mustafa, Mohd. Razali **Rizal and Seik Weng Ng***

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 7 January 2008; accepted 21 January 2008

Key indicators: single-crystal X-ray study; T = 128 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.025; *wR* factor = 0.100; data-to-parameter ratio = 13.4.

The Zn atom in the title compound, $[Zn(C_{17}H_{14}ClN_2O)_2]$, is N,O-chelated by two deprotonated Schiff base monoanionic ligands in a tetrahedral coordination geometry. The Zn atom lies on a special position of site symmetry 2.

Related literature

For the structure of the unsubstituted $[(C_{17}H_{15}N_2O)_2Zn]$, see Chen et al. (2007); Ng (2008).

17664 measured reflections

 $R_{\rm int} = 0.025$

3352 independent reflections

3023 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$[Zn(C_{17}H_{14}ClN_2O)_2]$ M = 660.87	V = 2932.73 (8) Å ³
$M_r = 000.07$ Monoclinic, C2/c	Mo $K\alpha$ radiation
a = 25.8989 (3) A b = 5.4960 (1) Å	$\mu = 1.06 \text{ mm}^{-1}$ T = 128 (2) K
c = 20.6138 (3) A $\beta = 91.801$ (1)°	$0.50 \times 0.30 \times 0.17 \text{ mm}$

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.714, \ T_{\max} = 0.840$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	14 restraints
$wR(F^2) = 0.100$	All H-atom parameters refined
S = 1.21	$\Delta \rho_{\rm max} = 0.55 \text{ e } \text{\AA}^{-3}$
3352 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
251 parameters	

Table 1

Selected geometric parameters (Å, °).

Zn1–O1	1.907 (1)	Zn1-N1	2.016 (1)
$O1-Zn1-O1^i$ O1-Zn1-N1	116.62 (8) 95.57 (5)	$O1-Zn1-N1^i$ $N1-Zn1-N1^i$	125.55 (6) 99.56 (8)

Symmetry code: (i) -x + 1, y, $-z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005): data reduction: SAINT: program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12-02-03-2031) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2370).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, J., Xu, X.-Y., Gao, J., Li, Y.-H. & Xu, G.-X. (2007). Chin. J. Struct. Chem. 26, 632-636.

Ng, S. W. (2008). Private communication (deposition number: 67380). CCDC, Cambridge, England.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supplementary materials

Acta Cryst. (2008). E64, m421 [doi:10.1107/S1600536808002213]

Bis{4-chloro-2-[2-(1*H*-indol-3-yl)ethyliminomethyl]phenolato- $\kappa^2 N, O$ }zinc(II)

H. M. Ali, M. I. Mohamed Mustafa, M. R. Rizal and S. W. Ng

Comment

We have recently reported the low-temperature structure of the zinc derivative of the ligand without any substituent, $[C_{17}H_{15}N_2O)_2Zn]$ (Ng, 2008); the low-temperature structure is identical to the room-temperature structure (Chen *et al.*, 2007). The present compound has a chlorine substituent but this does not lead to significant changes to the bond dimensions of the central metal.

Experimental

The Schiff base ligand was synthesized by the reaction of tryptamine (0.32 g, 2 mmol), 5-chlorosalicylaldehyde (0.24 g, 2 mmol) and zinc acetate (0.19 g, 1 mmol) in ethanol. There organic reagents were first heated for an hour. Zinc acetate was then added followed by excess of triethylamine (1 ml). Crystals were obtained by recrystallization from dimethylformamide.

Refinement

All H atoms were located in a difference Fourier map, and were refined with distance restraints of C–H 1.00 Å and N–H 0.88 Å; their temperature factors were freely refined.

Figures

Fig. 1. Thermal ellipsoid plot of $Zn(C_{17}H_{14}ClN_2O)$. Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii.

Bis{4-chloro-2-[2-(1*H*-indol-3-yl)ethyliminomethyl]phenolato- $\kappa^2 N$,O}zinc(II)

Crystal data $[Zn(C_{17}H_{14}ClN_2O)_2]$ $M_r = 660.87$ Monoclinic, C2/cHall symbol: -C 2yc a = 25.8989 (3) Å b = 5.4960 (1) Å c = 20.6138 (3) Å $\beta = 91.801$ (1)°

F(000) = 1360 $D_{\rm x} = 1.497 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 9956 reflections \theta = 2.5-31.2° \mu = 1.06 mm^{-1} T = 128 K Block, colorless $V = 2932.73 (8) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII diffractometer	3352 independent reflections
Radiation source: medium-focus sealed tube	3023 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
φ and ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -33 \rightarrow 33$
$T_{\min} = 0.714, T_{\max} = 0.840$	$k = -6 \rightarrow 7$
17664 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.100$	All H-atom parameters refined
<i>S</i> = 1.21	$w = 1/[\sigma^2(F_0^2) + (0.0632P)^2 + 1.1156P]$ where $P = (F_0^2 + 2F_c^2)/3$
3352 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
251 parameters	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
14 restraints	$\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

 $0.50 \times 0.30 \times 0.17 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.5000	0.49480 (5)	0.7500	0.01823 (11)
Cl1	0.39490 (2)	0.33657 (10)	0.42675 (2)	0.03469 (14)
01	0.46240 (5)	0.6771 (2)	0.68555 (6)	0.0256 (3)
N1	0.53085 (5)	0.2579 (3)	0.68736 (6)	0.0167 (3)
C1	0.45075 (6)	0.5975 (3)	0.62688 (7)	0.0175 (3)
N2	0.71557 (6)	-0.2875 (3)	0.76815 (7)	0.0235 (3)
C2	0.41428 (7)	0.7308 (3)	0.58836 (8)	0.0226 (3)
C3	0.39787 (7)	0.6548 (3)	0.52766 (8)	0.0230 (3)
C4	0.41765 (7)	0.4409 (4)	0.50234 (8)	0.0216 (3)
C5	0.45433 (7)	0.3096 (3)	0.53648 (8)	0.0206 (3)
C6	0.47188 (6)	0.3836 (3)	0.59882 (7)	0.0167 (3)
C7	0.51092 (6)	0.2301 (3)	0.63013 (8)	0.0181 (3)
C8	0.56967 (6)	0.0809 (3)	0.71064 (8)	0.0186 (3)
C9	0.62386 (7)	0.1885 (4)	0.70984 (11)	0.0305 (4)
C10	0.66211 (7)	0.0247 (3)	0.74448 (10)	0.0233 (4)
C11	0.68435 (7)	-0.1805 (3)	0.72056 (9)	0.0245 (4)

C12	0.68028 (6)	0.0477 (3)	0.81090 (9)	0.0209 (3)
C13	0.67219 (7)	0.2182 (4)	0.86012 (10)	0.0296 (4)
C15	0.69689 (9)	0.1852 (4)	0.91969 (10)	0.0359 (5)
C16	0.72995 (9)	-0.0135 (4)	0.93160 (11)	0.0344 (5)
C17	0.73904 (7)	-0.1845 (4)	0.88415 (9)	0.0279 (4)
C18	0.71359 (6)	-0.1517 (3)	0.82397 (8)	0.0205 (3)
H2N	0.7331 (9)	-0.421 (3)	0.7639 (13)	0.042 (7)*
H2	0.3996 (9)	0.884 (3)	0.6056 (11)	0.036 (6)*
Н3	0.3712 (7)	0.753 (4)	0.5031 (10)	0.033 (6)*
Н5	0.4670 (8)	0.155 (3)	0.5170 (11)	0.036 (6)*
H7	0.5240 (7)	0.097 (3)	0.6024 (8)	0.017 (5)*
H81	0.5617 (8)	0.033 (3)	0.7554 (6)	0.018 (5)*
H82	0.5676 (9)	-0.067 (3)	0.6831 (10)	0.028 (5)*
H91	0.6237 (11)	0.351 (3)	0.7316 (12)	0.052 (8)*
H92	0.6344 (10)	0.217 (5)	0.6640 (6)	0.048 (8)*
H11	0.6818 (9)	-0.251 (4)	0.6764 (6)	0.034 (6)*
H13	0.6501 (8)	0.365 (3)	0.8521 (11)	0.038 (6)*
H15	0.6893 (9)	0.299 (4)	0.9553 (9)	0.037 (6)*
H16	0.7477 (10)	-0.026 (5)	0.9748 (8)	0.045 (8)*
H17	0.7634 (8)	-0.323 (3)	0.8917 (12)	0.041 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.02395 (17)	0.01667 (17)	0.01391 (15)	0.000	-0.00209 (10)	0.000
Cl1	0.0418 (3)	0.0423 (3)	0.0191 (2)	0.0051 (2)	-0.01249 (18)	-0.00457 (18)
01	0.0394 (7)	0.0195 (6)	0.0173 (6)	0.0091 (5)	-0.0061 (5)	-0.0035 (5)
N1	0.0163 (6)	0.0165 (7)	0.0174 (6)	0.0011 (5)	-0.0005 (5)	0.0026 (5)
C1	0.0215 (7)	0.0158 (8)	0.0153 (7)	0.0005 (6)	-0.0003 (6)	0.0006 (6)
N2	0.0211 (7)	0.0231 (8)	0.0262 (7)	0.0056 (6)	-0.0016 (6)	-0.0016 (6)
C2	0.0264 (9)	0.0193 (8)	0.0222 (8)	0.0065 (7)	0.0000 (6)	0.0018 (6)
C3	0.0227 (8)	0.0247 (9)	0.0212 (8)	0.0039 (7)	-0.0029 (6)	0.0072 (7)
C4	0.0236 (8)	0.0268 (8)	0.0142 (7)	-0.0009(7)	-0.0026 (6)	-0.0005 (6)
C5	0.0231 (8)	0.0214 (8)	0.0172 (7)	0.0029 (6)	-0.0001 (6)	-0.0021 (6)
C6	0.0185 (7)	0.0168 (8)	0.0148 (7)	0.0013 (6)	-0.0005 (5)	0.0007 (6)
C7	0.0186 (7)	0.0173 (8)	0.0186 (7)	0.0030 (6)	0.0006 (6)	-0.0001 (6)
C8	0.0183 (7)	0.0173 (8)	0.0201 (7)	0.0020 (6)	-0.0025 (6)	0.0032 (6)
C9	0.0186 (8)	0.0281 (10)	0.0444 (11)	-0.0022 (7)	-0.0044 (7)	0.0164 (9)
C10	0.0154 (7)	0.0226 (9)	0.0319 (10)	-0.0029 (6)	-0.0015 (7)	0.0075 (7)
C11	0.0206 (8)	0.0281 (9)	0.0246 (8)	-0.0026 (7)	-0.0040 (6)	0.0022 (7)
C12	0.0152 (7)	0.0179 (8)	0.0298 (9)	-0.0013 (6)	0.0030 (6)	0.0036 (7)
C13	0.0264 (9)	0.0199 (9)	0.0431 (11)	-0.0029 (7)	0.0094 (8)	-0.0036 (8)
C15	0.0408 (11)	0.0315 (11)	0.0359 (10)	-0.0118 (9)	0.0098 (8)	-0.0126 (9)
C16	0.0399 (11)	0.0382 (12)	0.0249 (10)	-0.0122 (8)	-0.0022 (8)	0.0001 (8)
C17	0.0265 (9)	0.0293 (10)	0.0275 (9)	-0.0020(7)	-0.0043 (7)	0.0047 (7)
C18	0.0179 (7)	0.0194 (8)	0.0241 (8)	-0.0010 (6)	0.0010 (6)	0.0018 (6)

Geometric parameters (Å, °)

Zn1—01	1.907 (1)	С7—Н7	0.994 (9)
Zn1—O1 ⁱ	1.907(1)	C8—C9	1.523 (2)
Zn1—N1	2.016(1)	C8—H81	0.989 (9)
Zn1—N1 ⁱ	2.016(1)	C8—H82	0.994 (10)
Cl1—C4	1.745 (2)	C9—C10	1.502 (2)
01—C1	1.312 (2)	C9—H91	0.998 (10)
N1—C7	1.282 (2)	С9—Н92	1.004 (10)
N1—C8	1.469 (2)	C10—C11	1.366 (3)
C1—C2	1.419 (2)	C10—C12	1.439 (3)
C1—C6	1.427 (2)	C11—H11	0.990 (10)
N2—C18	1.374 (2)	C12—C13	1.402 (3)
N2—C11	1.383 (2)	C12—C18	1.415 (2)
N2—H2N	0.870 (10)	C13—C15	1.379 (3)
C2—C3	1.374 (2)	C13—H13	0.998 (10)
С2—Н2	0.994 (10)	C15—C16	1.405 (3)
C3—C4	1.391 (3)	C15—H15	0.990 (10)
С3—Н3	1.001 (10)	C16—C17	1.382 (3)
C4—C5	1.370 (2)	C16—H16	0.992 (10)
C5—C6	1.410(2)	C17—C18	1.398 (2)
С5—Н5	0.999 (10)	C17—H17	0.996 (10)
С6—С7	1.453 (2)		
O1—Zn1—O1 ⁱ	116.62 (8)	N1—C8—H81	108.7 (12)
01—Zn1—N1	95.57 (5)	С9—С8—Н81	109.5 (12)
O1—Zn1—N1 ⁱ	125.55 (6)	N1—C8—H82	109.4 (14)
O1 ⁱ —Zn1—N1	125.55 (6)	С9—С8—Н82	110.3 (13)
O1 ⁱ —Zn1—N1 ⁱ	95.57 (5)	H81—C8—H82	107.8 (18)
N1—Zn1—N1 ⁱ	99.56 (8)	С10—С9—С8	110.87 (15)
C1	124.38 (11)	С10—С9—Н91	109.5 (17)
C7—N1—C8	118.25 (14)	C8—C9—H91	109.0 (16)
C7—N1—Zn1	120.68 (11)	С10—С9—Н92	110.3 (16)
C8—N1—Zn1	119.96 (10)	С8—С9—Н92	110.3 (15)
O1—C1—C2	118.25 (15)	Н91—С9—Н92	107 (2)
O1—C1—C6	124.63 (15)	C11—C10—C12	106.68 (16)
C2—C1—C6	117.12 (14)	C11—C10—C9	127.04 (19)
C18—N2—C11	109.06 (15)	C12—C10—C9	126.20 (17)
C18—N2—H2N	125.3 (18)	C10-C11-N2	109.81 (16)
C11—N2—H2N	125.7 (18)	C10-C11-H11	129.7 (14)
C3—C2—C1	122.28 (16)	N2-C11-H11	120.4 (14)
С3—С2—Н2	118.2 (14)	C13—C12—C18	118.94 (17)
C1—C2—H2	119.6 (14)	C13—C12—C10	134.06 (17)
C2—C3—C4	119.47 (15)	C18—C12—C10	106.99 (15)
С2—С3—Н3	119.0 (14)	C15—C13—C12	118.76 (19)
С4—С3—Н3	121.5 (14)	C15—C13—H13	120.0 (14)
C5—C4—C3	120.68 (16)	C12—C13—H13	121.2 (14)

C5—C4—Cl1	119.65 (14)	C13—C15—C16	121.40 (19)
C3—C4—Cl1	119.66 (13)	C13—C15—H15	118.7 (15)
C4—C5—C6	120.98 (16)	C16—C15—H15	119.8 (15)
С4—С5—Н5	118.2 (14)	C17—C16—C15	121.4 (2)
С6—С5—Н5	120.8 (14)	С17—С16—Н16	120.4 (16)
C5—C6—C1	119.38 (14)	С15—С16—Н16	118.2 (16)
C5—C6—C7	115.93 (14)	C16—C17—C18	117.02 (18)
C1—C6—C7	124.69 (14)	С16—С17—Н17	121.9 (15)
N1—C7—C6	126.44 (15)	C18—C17—H17	121.1 (15)
N1—C7—H7	118.8 (12)	N2-C18-C17	130.10 (17)
С6—С7—Н7	114.6 (12)	N2-C18-C12	107.45 (15)
N1—C8—C9	111.15 (14)	C17—C18—C12	122.43 (17)
O1 ⁱ —Zn1—O1—C1	153.77 (15)	C1—C6—C7—N1	2.3 (3)
N1—Zn1—O1—C1	19.16 (14)	C7—N1—C8—C9	104.80 (18)
N1 ⁱ —Zn1—O1—C1	-86.78 (15)	Zn1—N1—C8—C9	-87.15 (16)
O1—Zn1—N1—C7	-18.84 (14)	N1-C8-C9-C10	169.91 (16)
Ol ⁱ —Zn1—N1—C7	-147.38 (12)	C8—C9—C10—C11	79.8 (2)
N1 ⁱ —Zn1—N1—C7	108.67 (14)	C8—C9—C10—C12	-96.6 (2)
O1—Zn1—N1—C8	173.41 (12)	C12-C10-C11-N2	-0.1 (2)
Ol ⁱ —Zn1—N1—C8	44.87 (14)	C9-C10-C11-N2	-177.12 (16)
N1 ⁱ —Zn1—N1—C8	-59.09 (10)	C18—N2—C11—C10	0.3 (2)
Zn1—O1—C1—C2	167.80 (12)	C11-C10-C12-C13	178.99 (19)
Zn1—O1—C1—C6	-11.6 (2)	C9-C10-C12-C13	-4.0 (3)
O1—C1—C2—C3	-176.76 (17)	C11-C10-C12-C18	-0.05 (19)
C6—C1—C2—C3	2.7 (3)	C9—C10—C12—C18	176.96 (16)
C1—C2—C3—C4	-0.4 (3)	C18—C12—C13—C15	-0.2 (3)
C2—C3—C4—C5	-1.9 (3)	C10-C12-C13-C15	-179.14 (19)
C2—C3—C4—Cl1	177.25 (14)	C12-C13-C15-C16	0.4 (3)
C3—C4—C5—C6	1.8 (3)	C13—C15—C16—C17	-0.1 (3)
Cl1—C4—C5—C6	-177.31 (13)	C15-C16-C17-C18	-0.4 (3)
C4—C5—C6—C1	0.5 (3)	C11—N2—C18—C17	-178.80 (18)
C4—C5—C6—C7	-179.84 (16)	C11—N2—C18—C12	-0.31 (19)
O1—C1—C6—C5	176.72 (16)	C16—C17—C18—N2	178.95 (18)
C2—C1—C6—C5	-2.7 (2)	C16-C17-C18-C12	0.7 (3)
O1—C1—C6—C7	-2.9 (3)	C13—C12—C18—N2	-178.99 (16)
C2-C1-C6-C7	177.69 (15)	C10-C12-C18-N2	0.22 (19)
C8—N1—C7—C6	179.43 (15)	C13—C12—C18—C17	-0.4 (3)
Zn1—N1—C7—C6	11.5 (2)	C10-C12-C18-C17	178.85 (16)
C5—C6—C7—N1	-177.31 (16)		

Symmetry codes: (i) -x+1, y, -z+3/2.

Fig. 1