organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-n-butylammonium 2-[(3,5-di-tertbutyl-4-hydroxybenzyl)sulfanyl]benzoate

Abeer A. Alhadi,^a Hamid Khaledi,^a* Hapipah Mohd Ali^a and Marilyn M. Olmstead^b

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA

Correspondence e-mail: khaledi@siswa.um.edu.my

Received 16 July 2010; accepted 23 August 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.138; data-to-parameter ratio = 15.8.

The title salt, $C_8H_{20}N^+ \cdot C_{22}H_{27}O_3S^-$, is a proton-transfer compound derived from the recently reported parent carboxylic acid [Alhadi et al. (2010). Acta Cryst. E66, 01787] by the addition of a second equivalent of di-n-butylamine, yielding the di-n-butylammonium carboxylate salt. The structure of the carboxylate anion resembles that of the parent carboxylic acid. The main difference lies in the position of the H atom in the 4hydroxy group. In the anion the O-H bond is perpendicular, rather than parallel, to the benzyl ring. This position appears to facilitate hydrogen bonding to an O atom of the carboxylate group of a symmetry-related anion. In addition, there are three N-H...O hydrogen bonds. In contrast, the neutral species hydrogen bonds via a carboxylic acid dimer. The dihedral angle between the benzene rings in the anion is 79.19 (7)°.

Related literature

For the structure of the parent benzoic acid, see: Alhadi et al. (2010). For a similar structure based on nicotinic acid, see: Mansor et al. (2008).

Experimental

Crystal data

$C_8H_{20}N^+ \cdot C_{22}H_{27}O_3S^-$	
$M_r = 501.75$	
Orthorhombic, Pbca	
ı = 12.8631 (5) Å	
b = 20.1109 (9) Å	
c = 23.0930 (9) Å	

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.922, T_{\max} = 0.954$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$ wR(F ²) = 0.138 S = 1.01	H atoms treated by a mixture o independent and constrained
5 = 1.01 5277 reflections 333 parameters	$\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.17 \text{ e} \text{ Å}^{-3}$
3 restraints	, mii

V = 5973.9 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.14 \text{ mm}^{-1}$

 $0.60 \times 0.40 \times 0.35 \text{ mm}$

44646 measured reflections 5277 independent reflections

3311 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int}=0.080$

Z = 8

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3−H3···O1 ⁱ	0.81 (2)	2.02 (2)	2.723 (3)	146 (3)
$N1 - H1A \cdots O2$	0.89 (2)	1.88 (2)	2.767 (3)	177 (3)
$N1-H1B\cdotsO1^{ii}$	0.89(2)	2.00(2)	2.806 (3)	150 (3)
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.89(2)	2.36 (2)	3.167 (3)	150 (2)
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.89 (2)	2.36 (2)	3.167 (3)	150 (2)

Symmetry codes: (i) x + 1, y, z; (ii) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors thank the University of Malaya for funding this study (FRGS grant FP009/2008 C).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2302).

References

Alhadi, A. A., Khaledi, H., Mohd Ali, H. & Olmstead, M. M. (2010). Acta Cryst. E66, 01787.

Bruker (2007). APEX2, SAINT and XP. Bruker AXS Inc., Madison, Wisconsin, USA.

Mansor, S., Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2008). Acta Cryst. E64, 01799.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2010). E66, o2454 [doi:10.1107/S1600536810033921]

Di-n-butylammonium 2-[(3,5-di-tert-butyl-4-hydroxybenzyl)sulfanyl]benzoate

A. A. Alhadi, H. Khaledi, H. Mohd Ali and M. M. Olmstead

Comment

As shown in Fig. 1, the title compound is a di-*n*-butylammonium salt. It is a proton transfer derivative of the previously reported benzoic acid analog (Alhadi *et al.*, 2010). In contrast to the structure of the parent carboxylic acid in which the C—O—H fragment was found coplanar to the aromatic ring and therefore not involved in any hydrogen bonding, in the present structure the O—H bond is perpendicular to the aromatic ring, and it participates in hydrogen bonding to the carboxylate group of the neighboring anion, forming an infinite chain along the *a* axis (Fig. 2). This arrangement is similar to that reported for the salt based on nicotinic acid (Mansor *et al.*, 2008). The dihedral angle between the aromatic rings C2/C3/C4/C5/C6/C7 and C9/C10/C11/C12/C13/C14 is 79.19 (7)°.

Experimental

Thiosalicylic acid (0.154 g, 1 mmol), 2,6-di-*t*-butylphenol (2.00 g, 1 mmol) and *para*formaldehyde (0.291 g, 1 mmol) were ground into a homogenous powder and to this was added di-*n*-butylamine (0.1 ml). The slurry was heated to 353 K for 2.5 h, then cooled to 323 K. Ethanol (20 ml) was added and the mixture was stirred for 1 h at room temperature. To the resulting clear solution di-*n*-butylamine (0.1 ml) was added and the solution was set aside in the dark for 5 days whereupon the colorless crystals of the title compound were obtained.

Refinement

The C-bound hydrogen atoms were placed at calculated positions (C—H 0.93–0.97 Å) and were treated as riding on their parent atoms. The nitrogen- and oxygen-bound hydrogen atoms were located in a difference map and were refined freely with distances restrained to N—H 0.86 (2) and O—H 0.82 (2) Å. For all H atoms, $U_{iso}(H)$ was set to 1.2–1.5 $U_{eq}(\text{carrier atom})$.

Figures

Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. H atoms participating in hydrogen bonding are drawn as spheres of arbitrary radius.

Fig. 2. A view of the hydrogen bonding interactions (dashed lines) as viewed down b. Symmetry codes: ' = x - 1, y, z; '' = -x + 1, -y, -z + 1.

Di-n-butylammonium 2-[(3,5-di-tert-butyl-4-hydroxybenzyl)sulfanyl]benzoate

F(000) = 2192

 $\theta = 2.4 - 19.4^{\circ}$

 $\mu = 0.14 \text{ mm}^{-1}$

T = 296 K

 $D_{\rm x} = 1.116 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Irregular block, colourless

 $0.60 \times 0.40 \times 0.35 \text{ mm}$

Cell parameters from 3944 reflections

Crystal data

 $C_8H_{20}N^+ \cdot C_{22}H_{27}O_3S^ M_r = 501.75$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.8631 (5) Å b = 20.1109 (9) Å c = 23.0930 (9) Å V = 5973.9 (4) Å³ Z = 8

Data collection

Bruker APEXII diffractometer	5277 independent reflections
Radiation source: fine-focus sealed tube	3311 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.080$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -15 \rightarrow 15$
$T_{\min} = 0.922, \ T_{\max} = 0.954$	$k = -23 \rightarrow 23$
44646 measured reflections	<i>l</i> = −27→27

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.138$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0533P)^2 + 2.2704P]$ where $P = (F_o^2 + 2F_c^2)/3$
5277 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
333 parameters	$\Delta \rho_{\text{max}} = 0.28 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
0 constraints	

0 constraints

				2
Fractional atomic coordinates and	isotropic or	equivalent isotropic	displacement	parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4142 (2)	0.10279 (13)	0.41431 (11)	0.0573 (7)

S1	0.64187 (5)	0.14037 (4)	0.37500 (3)	0.0571 (2)
01	0.32489 (16)	0.08674 (12)	0.42807 (11)	0.1060 (9)
O2	0.49152 (15)	0.07570 (10)	0.43550 (9)	0.0799 (6)
03	1.11548 (13)	0.06947 (10)	0.41947 (9)	0.0676 (5)
Н3	1.1701 (18)	0.0878 (16)	0.4133 (14)	0.101*
N1	0.65789 (17)	0.01880 (12)	0.49304 (11)	0.0639 (6)
H1A	0.6030 (17)	0.0360 (13)	0.4749 (11)	0.077*
H1B	0.639 (2)	-0.0157 (11)	0.5148 (11)	0.077*
C2	0.42822 (17)	0.15713 (11)	0.37050 (9)	0.0443 (6)
C3	0.34012 (19)	0.18891 (13)	0.34973 (11)	0.0552 (6)
H3A	0.2754	0.1757	0.3635	0.066*
C4	0.3448 (2)	0.23882 (15)	0.30980 (12)	0.0669 (8)
H4	0.2843	0.2591	0.2966	0.080*
C5	0.4395 (2)	0.25874 (15)	0.28939 (13)	0.0732 (9)
Н5	0.4436	0.2928	0.2623	0.088*
C6	0.5294 (2)	0.22837 (14)	0.30893 (12)	0.0648 (7)
H6	0.5934	0.2422	0.2945	0.078*
C7	0.52605 (17)	0.17767 (12)	0.34970 (10)	0.0459 (6)
C8	0.74329 (17)	0.18495 (13)	0.33648 (11)	0.0579 (7)
H8A	0.7354	0.1789	0.2950	0.069*
H8B	0.7394	0.2321	0.3450	0.069*
С9	0.84580 (18)	0.15715 (13)	0.35632 (11)	0.0512 (6)
C10	0.89894 (18)	0.11082 (12)	0.32410 (11)	0.0516 (6)
H10	0.8716	0.0979	0.2885	0.062*
C11	0.99201 (17)	0.08236 (12)	0.34249 (10)	0.0482 (6)
C12	1.02979 (17)	0.10199 (12)	0.39672 (10)	0.0486 (6)
C13	0.97987 (18)	0.15064 (13)	0.43035 (10)	0.0524 (6)
C14	0.88760 (18)	0.17683 (13)	0.40858 (11)	0.0556 (7)
H14	0.8527	0.2089	0.4302	0.067*
C15	1.0201 (2)	0.17282 (17)	0.49001 (12)	0.0734 (9)
C16	0.9545 (3)	0 2305 (2)	0 51411 (17)	0 1397 (19)
H16A	0.9577	0.2675	0.4879	0.209*
H16B	0.9814	0.2436	0.5512	0.209*
H16C	0.8837	0.2164	0.5183	0.209*
C17	1 0103 (3)	0 1149 (2)	0.53240 (13)	0.1155 (15)
H17A	1.0507	0.0780	0.5186	0.173*
H17B	0.9387	0.1020	0.5355	0.173*
H17C	1 0354	0.1284	0.5697	0.173*
C18	1 1328 (2)	0 19722 (19)	0.48760 (15)	0.0960 (11)
H18A	1 1779	0.1605	0 4790	0 144*
H18B	1 1516	0.2161	0 5243	0 144*
H18C	1 1395	0.2304	0.4579	0 144*
C19	1 04977 (19)	0.03203(13)	0 30369 (11)	0.0579(7)
C20	0.9917 (2)	0.02028 (16)	0.24637 (13)	0.0872(9)
H20A	1.0298	-0.0109	0.2231	0.123*
H20B	0.9854	0.0616	0.2258	0.123*
H20C	0.9237	0.0028	0.2543	0.123*
C21	1 1572 (2)	0.05973 (17)	0.28782 (13)	0.0846 (10)
H21A	1 2001	0.0610	0.3218	0.127*
1121/1	1.2001	0.0010	0.3210	0.14/

H21B	1.1497	0.1039	0.2725	0.127*
H21C	1.1889	0.0317	0.2592	0.127*
C22	1.0605 (2)	-0.03551 (15)	0.33351 (14)	0.0824 (9)
H22A	1.0975	-0.0655	0.3086	0.124*
H22B	0.9926	-0.0532	0.3415	0.124*
H22C	1.0980	-0.0302	0.3691	0.124*
C23	0.7166 (4)	-0.1192 (2)	0.3170 (2)	0.1382 (17)
H23A	0.6944	-0.1593	0.3359	0.207*
H23B	0.7700	-0.1295	0.2894	0.207*
H23C	0.6585	-0.0993	0.2974	0.207*
C24	0.7569 (3)	-0.0731 (3)	0.35968 (18)	0.1261 (15)
H24A	0.7790	-0.0331	0.3397	0.151*
H24B	0.8183	-0.0928	0.3771	0.151*
C25	0.6833 (3)	-0.05329 (18)	0.40777 (15)	0.0897 (10)
H25A	0.6222	-0.0325	0.3910	0.108*
H25B	0.6608	-0.0929	0.4283	0.108*
C26	0.7327 (2)	-0.00614 (17)	0.44985 (13)	0.0771 (9)
H26A	0.7892	-0.0286	0.4696	0.093*
H26B	0.7619	0.0312	0.4288	0.093*
C27	0.7013 (2)	0.06935 (16)	0.53258 (14)	0.0783 (9)
H27A	0.7257	0.1071	0.5102	0.094*
H27B	0.7603	0.0507	0.5530	0.094*
C28	0.6206 (3)	0.09282 (17)	0.57620 (15)	0.0901 (10)
H28A	0.5647	0.1150	0.5557	0.108*
H28B	0.5914	0.0544	0.5957	0.108*
C29	0.6642 (3)	0.1391 (2)	0.62032 (18)	0.1121 (13)
H29A	0.6988	0.1755	0.6006	0.135*
H29B	0.7160	0.1157	0.6430	0.135*
C30	0.5837 (3)	0.1671 (3)	0.6604 (2)	0.1449 (18)
H30A	0.5335	0.1918	0.6384	0.217*
H30B	0.6164	0.1959	0.6880	0.217*
H30C	0.5494	0.1314	0.6804	0.217*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0437 (15)	0.0638 (17)	0.0644 (17)	0.0003 (14)	0.0004 (13)	0.0071 (14)
S 1	0.0381 (3)	0.0675 (4)	0.0658 (4)	0.0052 (3)	-0.0047 (3)	0.0172 (3)
01	0.0492 (12)	0.1187 (19)	0.150 (2)	-0.0007 (12)	0.0137 (13)	0.0679 (17)
O2	0.0560 (12)	0.0903 (15)	0.0934 (15)	0.0010 (11)	-0.0136 (10)	0.0372 (12)
O3	0.0384 (10)	0.0833 (14)	0.0810 (13)	0.0067 (10)	-0.0051 (9)	0.0132 (11)
N1	0.0461 (13)	0.0715 (17)	0.0741 (17)	-0.0010 (12)	-0.0089 (12)	0.0213 (13)
C2	0.0394 (13)	0.0497 (14)	0.0437 (13)	0.0041 (11)	-0.0048 (10)	-0.0035 (11)
C3	0.0408 (14)	0.0645 (17)	0.0603 (16)	0.0078 (12)	-0.0032 (12)	-0.0009 (14)
C4	0.0497 (16)	0.080 (2)	0.0707 (18)	0.0224 (15)	-0.0118 (13)	0.0079 (16)
C5	0.0632 (18)	0.080 (2)	0.076 (2)	0.0161 (16)	-0.0034 (15)	0.0288 (16)
C6	0.0465 (15)	0.0763 (19)	0.0715 (18)	0.0088 (14)	0.0009 (13)	0.0221 (16)
C7	0.0400 (13)	0.0513 (14)	0.0462 (14)	0.0064 (11)	-0.0047 (10)	0.0040 (12)

C8	0.0407 (14)	0.0651 (17)	0.0679 (17)	0.0015 (13)	-0.0041 (12)	0.0126 (14)
C9	0.0388 (13)	0.0586 (16)	0.0562 (15)	-0.0020 (12)	-0.0018 (11)	0.0095 (12)
C10	0.0429 (13)	0.0609 (16)	0.0510 (15)	-0.0045 (13)	-0.0015 (11)	0.0036 (13)
C11	0.0379 (13)	0.0557 (15)	0.0512 (15)	-0.0006 (11)	0.0068 (11)	0.0065 (12)
C12	0.0309 (12)	0.0614 (16)	0.0536 (15)	-0.0005 (12)	0.0056 (11)	0.0088 (12)
C13	0.0375 (13)	0.0700 (17)	0.0497 (15)	-0.0021 (12)	0.0020 (11)	0.0026 (13)
C14	0.0413 (14)	0.0644 (17)	0.0612 (17)	0.0033 (12)	0.0051 (12)	-0.0020 (13)
C15	0.0501 (16)	0.113 (2)	0.0569 (18)	0.0101 (17)	-0.0042 (13)	-0.0163 (17)
C16	0.106 (3)	0.208 (5)	0.105 (3)	0.055 (3)	-0.034 (2)	-0.092 (3)
C17	0.072 (2)	0.217 (5)	0.058 (2)	-0.007 (3)	-0.0067 (17)	0.031 (3)
C18	0.070 (2)	0.128 (3)	0.090 (2)	-0.016 (2)	-0.0125 (17)	-0.031 (2)
C19	0.0473 (15)	0.0646 (17)	0.0616 (17)	0.0025 (13)	0.0091 (12)	-0.0025 (14)
C20	0.084 (2)	0.091 (2)	0.071 (2)	0.0077 (18)	0.0033 (17)	-0.0192 (18)
C21	0.0661 (19)	0.102 (3)	0.086 (2)	-0.0117 (18)	0.0308 (16)	-0.0162 (19)
C22	0.079 (2)	0.069 (2)	0.099 (2)	0.0095 (17)	0.0052 (18)	0.0039 (18)
C23	0.154 (4)	0.123 (3)	0.138 (4)	0.040 (3)	-0.021 (3)	-0.026 (3)
C24	0.081 (3)	0.181 (5)	0.116 (3)	0.021 (3)	-0.007 (2)	-0.011 (3)
C25	0.071 (2)	0.099 (3)	0.099 (3)	0.0172 (19)	-0.0035 (19)	0.003 (2)
C26	0.0496 (17)	0.098 (2)	0.084 (2)	0.0130 (17)	-0.0005 (15)	0.0249 (19)
C27	0.0577 (18)	0.088 (2)	0.089 (2)	-0.0107 (17)	-0.0169 (16)	0.0154 (18)
C28	0.069 (2)	0.095 (3)	0.107 (3)	-0.0073 (19)	-0.0078 (19)	-0.009(2)
C29	0.090 (3)	0.130 (3)	0.117 (3)	-0.010 (2)	-0.009 (2)	-0.021 (3)
C30	0.105 (3)	0.183 (5)	0.147 (4)	-0.021 (3)	0.022 (3)	-0.055 (4)

Geometric parameters (Å, °)

C1—O2	1.235 (3)	C17—H17B	0.9600
C1—01	1.235 (3)	C17—H17C	0.9600
C1—C2	1.500 (3)	C18—H18A	0.9600
S1—C7	1.767 (2)	C18—H18B	0.9600
S1—C8	1.816 (2)	C18—H18C	0.9600
O3—C12	1.385 (3)	C19—C22	1.529 (4)
О3—Н3	0.806 (18)	C19—C21	1.534 (4)
N1-C26	1.474 (4)	C19—C20	1.538 (4)
N1—C27	1.476 (4)	C20—H20A	0.9600
N1—H1A	0.890 (17)	C20—H20B	0.9600
N1—H1B	0.892 (17)	C20—H20C	0.9600
C2—C3	1.387 (3)	C21—H21A	0.9600
C2—C7	1.409 (3)	C21—H21B	0.9600
C3—C4	1.364 (4)	C21—H21C	0.9600
С3—НЗА	0.9300	C22—H22A	0.9600
C4—C5	1.366 (4)	C22—H22B	0.9600
C4—H4	0.9300	C22—H22C	0.9600
С5—С6	1.383 (3)	C23—C24	1.450 (5)
С5—Н5	0.9300	С23—Н23А	0.9600
С6—С7	1.389 (3)	C23—H23B	0.9600
С6—Н6	0.9300	C23—H23C	0.9600
С8—С9	1.504 (3)	C24—C25	1.513 (5)
C8—H8A	0.9700	C24—H24A	0.9700

C8—H8B	0.9700	C24—H24B	0.9700
C9—C10	1.374 (3)	C25—C26	1.499 (4)
C9—C14	1.379 (3)	C25—H25A	0.9700
C10-C11	1.393 (3)	C25—H25B	0.9700
C10—H10	0.9300	C26—H26A	0.9700
C11—C12	1.400 (3)	C26—H26B	0.9700
C11—C19	1.543 (3)	C27—C28	1.521 (4)
C12—C13	1.405 (3)	С27—Н27А	0.9700
C13—C14	1.392 (3)	С27—Н27В	0.9700
C13—C15	1.538 (4)	C28—C29	1.490 (5)
C14—H14	0.9300	C28—H28A	0.9700
C15—C17	1.526 (5)	C28—H28B	0.9700
C15—C18	1.532 (4)	C29—C30	1.498 (5)
C15—C16	1.538 (4)	С29—Н29А	0.9700
C16—H16A	0.9600	С29—Н29В	0.9700
C16—H16B	0.9600	C30—H30A	0.9600
C16—H16C	0.9600	C30—H30B	0.9600
C17—H17A	0.9600	С30—Н30С	0.9600
O2—C1—O1	122.1 (3)	H18A—C18—H18C	109.5
O2—C1—C2	119.5 (2)	H18B—C18—H18C	109.5
O1—C1—C2	118.4 (2)	C22—C19—C21	110.4 (2)
C7—S1—C8	103.55 (11)	C22—C19—C20	107.2 (2)
С12—О3—Н3	114 (3)	C21—C19—C20	106.7 (2)
C26—N1—C27	114.0 (2)	C22—C19—C11	111.4 (2)
C26—N1—H1A	109.4 (18)	C21—C19—C11	109.5 (2)
C27—N1—H1A	108.8 (18)	C20—C19—C11	111.5 (2)
C26—N1—H1B	107.3 (18)	С19—С20—Н20А	109.5
C27—N1—H1B	106.9 (18)	С19—С20—Н20В	109.5
H1A—N1—H1B	110 (3)	H20A—C20—H20B	109.5
C3—C2—C7	118.5 (2)	C19—C20—H20C	109.5
C3—C2—C1	118.1 (2)	H20A-C20-H20C	109.5
C7—C2—C1	123.4 (2)	H20B-C20-H20C	109.5
C4—C3—C2	122.5 (2)	C19—C21—H21A	109.5
С4—С3—НЗА	118.8	C19—C21—H21B	109.5
С2—С3—НЗА	118.8	H21A—C21—H21B	109.5
C3—C4—C5	119.2 (2)	C19—C21—H21C	109.5
С3—С4—Н4	120.4	H21A—C21—H21C	109.5
C5—C4—H4	120.4	H21B—C21—H21C	109.5
C4—C5—C6	120.2 (3)	C19—C22—H22A	109.5
С4—С5—Н5	119.9	C19—C22—H22B	109.5
С6—С5—Н5	119.9	H22A—C22—H22B	109.5
C5—C6—C7	121.3 (2)	C19—C22—H22C	109.5
С5—С6—Н6	119.4	H22A—C22—H22C	109.5
С7—С6—Н6	119.4	H22B—C22—H22C	109.5
C6—C7—C2	118.3 (2)	C24—C23—H23A	109.5
C6—C7—S1	120.62 (18)	С24—С23—Н23В	109.5
C2—C7—S1	121.05 (17)	H23A—C23—H23B	109.5
C9—C8—S1	107.30 (17)	C24—C23—H23C	109.5
С9—С8—Н8А	110.3	H23A—C23—H23C	109.5

S1—C8—H8A	110.3	H23B—C23—H23C	109.5
С9—С8—Н8В	110.3	C23—C24—C25	116.3 (4)
S1—C8—H8B	110.3	C23—C24—H24A	108.2
H8A—C8—H8B	108.5	C25—C24—H24A	108.2
C10-C9-C14	118.3 (2)	C23—C24—H24B	108.2
C10—C9—C8	121.6 (2)	C25—C24—H24B	108.2
C14—C9—C8	120.1 (2)	H24A—C24—H24B	107.4
C9—C10—C11	122.7 (2)	C26—C25—C24	112.1 (3)
C9—C10—H10	118.6	С26—С25—Н25А	109.2
C11-C10-H10	118.6	С24—С25—Н25А	109.2
C10-C11-C12	117.1 (2)	С26—С25—Н25В	109.2
C10-C11-C19	120.4 (2)	С24—С25—Н25В	109.2
C12—C11—C19	122.5 (2)	H25A—C25—H25B	107.9
O3—C12—C11	118.8 (2)	N1—C26—C25	112.2 (2)
O3—C12—C13	118.9 (2)	N1—C26—H26A	109.2
C11—C12—C13	122.2 (2)	С25—С26—Н26А	109.2
C14—C13—C12	117.0 (2)	N1—C26—H26B	109.2
C14—C13—C15	120.0 (2)	С25—С26—Н26В	109.2
C12—C13—C15	122.9 (2)	H26A—C26—H26B	107.9
C9—C14—C13	122.7 (2)	N1—C27—C28	111.4 (2)
С9—С14—Н14	118.7	N1—C27—H27A	109.3
C13—C14—H14	118.7	С28—С27—Н27А	109.3
C17—C15—C18	110.2 (3)	N1—C27—H27B	109.3
C17—C15—C13	109.0 (3)	С28—С27—Н27В	109.3
C18—C15—C13	112.2 (2)	H27A—C27—H27B	108.0
C17—C15—C16	107.4 (3)	C29—C28—C27	113.0 (3)
C18—C15—C16	106.9 (3)	C29—C28—H28A	109.0
C13—C15—C16	111.0 (2)	C27—C28—H28A	109.0
C15-C16-H16A	109.5	C29—C28—H28B	109.0
C15—C16—H16B	109.5	C27—C28—H28B	109.0
H16A—C16—H16B	109.5	H28A—C28—H28B	107.8
C15—C16—H16C	109.5	C28—C29—C30	113.4 (3)
H16A—C16—H16C	109.5	С28—С29—Н29А	108.9
H16B—C16—H16C	109.5	С30—С29—Н29А	108.9
С15—С17—Н17А	109.5	С28—С29—Н29В	108.9
С15—С17—Н17В	109.5	С30—С29—Н29В	108.9
H17A—C17—H17B	109.5	H29A—C29—H29B	107.7
С15—С17—Н17С	109.5	С29—С30—Н30А	109.5
H17A—C17—H17C	109.5	С29—С30—Н30В	109.5
H17B—C17—H17C	109.5	H30A—C30—H30B	109.5
C15-C18-H18A	109.5	С29—С30—Н30С	109.5
C15—C18—H18B	109.5	H30A—C30—H30C	109.5
H18A—C18—H18B	109.5	H30B—C30—H30C	109.5
C15—C18—H18C	109.5		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O3—H3···O1 ⁱ	0.81 (2)	2.02 (2)	2.723 (3)	146 (3)

N1—H1A…O2	0.89 (2)	1.88 (2)	2.767 (3)	177 (3)
N1—H1B…O1 ⁱⁱ	0.89 (2)	2.00 (2)	2.806 (3)	150 (3)
N1—H1B···O2 ⁱⁱ	0.89 (2)	2.36 (2)	3.167 (3)	150 (2)
N1—H1B···O2 ⁱⁱ	0.89 (2)	2.36 (2)	3.167 (3)	150 (2)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) –*x*+1, –*y*, –*z*+1.

