The impact of biodiesel blend ratio on vehicle performance and emissions

Bannister, C.D. and Pickford, W. and Brown, A. and Chrysafi, S.S. and Price, P. and Chuck, C.J. and Ali, Hapipah Mohd and Hawley, J.G. (2010) The impact of biodiesel blend ratio on vehicle performance and emissions. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 224 (D3). pp. 405-421. ISSN 0954-4070, DOI https://doi.org/10.1243/09544070jauto1270.

Full text not available from this repository.
Official URL: http://apps.webofknowledge.com/InboundService.do?S...

Abstract

Biodiesel is synthesized via the transesterification of triglycerides contained within vegetable, animal, or waste oils. First-generation biofuels are not the solution to global transport energy needs; however, biodiesel does have a role to play in reducing greenhouse gas emissions from the transport sector, so long as necessary production can be achieved in a sustainable manner without negative impact on plant and animal biodiversity. The biodiesel content within diesel sold to consumers is set to increase in the future, with implications on vehicle fuel consumption, emissions, and base engine durability. This study examines the effects of increasing the biodiesel blend ratio on the performance and emissions of a production vehicle equipped with a common-rail direct-injection diesel engine, evaluated on a chassis rolls dynamometer, at various ambient temperatures. Results obtained show that reductions in engine-out carbon monoxide and hydrocarbon emissions do not always translate to lower tailpipe emissions as reduced exhaust gas temperatures at higher blend ratios lead to reduced catalyst conversion efficiencies and higher total cycle emissions. Catalyst conversion efficiencies for carbon monoxide and hydrocarbons over the New European Drive Cycle (NEDC) are reduced by 9-19 per cent (depending on the ambient temperature) for a 50:50 blend (B50) compared with the petroleum diesel (B0) baseline. Increasing the blend ratio caused a linear decrease in the vehicle's maximum tractive force. This reduction was of the order of 5 per cent for a B50 blend at low vehicle speeds and 6-10 per cent at higher speeds, which is greater than Would be expected on the basis of the differences in calorific values. Over the NEDC, the fuel consumption was found to increase with increasing blend ratio.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: Department of Chemistry, Faculty of Science Building, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
Uncontrolled Keywords: Biodiesel; emissions; New European Drive Cycle; catalyst performance
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Science > Department of Chemistry
Depositing User: Miss Malisa Diana
Date Deposited: 03 Apr 2013 03:49
Last Modified: 29 Jan 2019 08:46
URI: http://eprints.um.edu.my/id/eprint/5319

Actions (login required)

View Item View Item