Kamarulazam, Fathiah and Bashir, Shahid and Pershaanaa, M. and Goh, Zhi Ling and Surender, G. and Elumalai, Prince Nishchal Narayanaswamy and Farhana, N. K. and Ramesh, S. and Ramesh, K. (2023) Stretchable, self-healable and highly conductive natural-rubber hydrogel electrolytes for supercapacitors: Advanced wearable technology. Journal of Energy Storage, 71. ISSN 2352-152X, DOI https://doi.org/10.1016/j.est.2023.108182.
Full text not available from this repository.Abstract
Promising advancements in energy technologies lie in the development of highly flexible hydrogel electrolytes, which offer biodegradability, cost-effectiveness, and safety. However, striking a balance between stretchability, remarkable ionic conductivity, and self-healing ability remains challenging. In this research, we present a novel approach involving the utilization of epoxidized natural rubber (ENR)/acrylamide (AAm)/acrylic acid (AA) copolymer hydrogel electrolytes formed through a free radical mechanism. To further enhance the conductivity, hydrogel electrolytes were immersed in 1 M sodium sulfate (Na2SO4) salt solutions for varying periods. By capitalizing on the hydrogen bonding and electrostatic interactions within the hydrogels and the hydrogel-salt interaction, the resulting hydrogel exhibited an impressive ionic conductivity of 19.4 x 10-2 S/cm, a stretchability of 550 % from its initial length, and demonstrated self-healing capabilities. Additionally, employing symmetrical porous carbon electrodes, the hydrogel-based electric double layer capacitor (EDLC) achieved an outstanding specific capacitance of 55.65 F/g, enduring stable cycling over 3500 cycles without significant discharge. Notably, the mechanical strength of the hydrogel is significantly improved after the self-healing process. Importantly, this study highlights the significant role of immersion time in improving the ionic conductivity and functionality of hydrogel electrolytes.
Item Type: | Article |
---|---|
Funders: | Technology Development Fund 1 (TeD1) from the Ministry of Science, Technology, and Innovation (MOSTI), Malaysia (FP076-2022), Fundamental Research Grant Scheme (FRGS) |
Uncontrolled Keywords: | Hydrogels electrolytes; Natural rubber; Electric double -layer capacitors; Sodium sulfate |
Subjects: | Q Science > Q Science (General) Q Science > QC Physics |
Divisions: | Faculty of Science > Department of Physics Deputy Vice Chancellor (Research & Innovation) Office > UM Power Energy Dedicated Advanced Centre |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 30 Jul 2025 03:17 |
Last Modified: | 30 Jul 2025 03:17 |
URI: | http://eprints.um.edu.my/id/eprint/50727 |
Actions (login required)
![]() |
View Item |