Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration

Prihandana, Gunawan Setia and Maulana, Sayed Sulthan and Soedirdjo, Rahmat Santoso and Tanujaya, Venni and Pramesti, Desak Made Adya and Sriani, Tutik and Jamaludin, Mohd Fadzil and Yusof, Farazila and Mahardika, Muslim (2023) Preparation and Characterization of Polyethersulfone/Activated Carbon Composite Membranes for Water Filtration. Membranes, 13 (12). ISSN 2077-0375, DOI https://doi.org/10.3390/membranes13120906.

Full text not available from this repository.

Abstract

Ultrafiltration membrane technology holds promise for wastewater treatment, but its widespread application is hindered by fouling and flux reduction issues. One effective strategy for enhancing ultrafiltration membranes involves incorporating activated carbon powder. In this study, composite polyethersulfone (PES) ultrafiltration membranes were fabricated to include activated carbon powder concentrations between 0 and 1.5 wt.%, with carbon size fixed at 200 mesh. The ultrafiltration membranes were evaluated in terms of membrane morphology, hydrophilicity, pure water flux, equilibrium water content, porosity, average pore size, protein separation, and E-coli bacteria removal. It was found that the addition of activated carbon to PES membranes resulted in improvements in some key properties. By incorporating activated carbon powder, the hydrophilicity of PES membranes was enhanced, lowering the contact angle from 60 degrees to 47.3 degrees for composite membranes (1.0 wt.% of activated carbon) compared to the pristine PES membrane. Water flux tests showed that the 1.0 wt.% composite membrane yielded the highest flux, with an improvement of nearly double the initial value at 2 bar, without compromising bovine serum albumin rejection or bacterial removal capabilities. This study also found that the inclusion of activated carbon had a minor impact on the membrane's porosity and equilibrium water content. Overall, these insights will be beneficial in determining the optimal concentration of activated carbon powder for PES ultrafiltration membranes.

Item Type: Article
Funders: Hibah SATU Joint Research Scheme, Airlangga University
Uncontrolled Keywords: polyethersulfone membrane; activated carbon; composite membrane; good health; clean water
Subjects: T Technology > TJ Mechanical engineering and machinery
Divisions: Centre for Foundation Studies in Science
Faculty of Engineering > Department of Mechanical Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 28 Oct 2025 08:44
Last Modified: 28 Oct 2025 08:44
URI: http://eprints.um.edu.my/id/eprint/50092

Actions (login required)

View Item View Item