Overexpression of OLIG2 and MYT1L transcription factors enhance the differentiation potential of human mesenchymal stem cells into oligodendrocytes

Fahim, Ifrah and Ishaque, Aisha and Ramzan, Faiza and Ahmad Shamsuddin, Shamsul Azlin and Ali, Anwar and Salim, Asmat and Khan, Irfan (2023) Overexpression of OLIG2 and MYT1L transcription factors enhance the differentiation potential of human mesenchymal stem cells into oligodendrocytes. Current Issues in Molecular Biology, 45 (5). pp. 4100-4123. ISSN 1467-3037, DOI https://doi.org/10.3390/cimb45050261.

Full text not available from this repository.

Abstract

Background: Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration. Objectives: The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders. Methodology: hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins. Results: All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days. Conclusions: The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration.

Item Type: Article
Funders: Higher Education Commission Pakistan [Grant No: NRPU 6573]
Uncontrolled Keywords: Mesenchymal stem cells; Fate specification; Oligodendrocytes; Differentiation; Gene expression
Subjects: Q Science > QD Chemistry
Q Science > QH Natural history > QH301 Biology
Divisions: Faculty of Science > Institute of Biological Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 06 Nov 2025 02:35
Last Modified: 06 Nov 2025 02:35
URI: http://eprints.um.edu.my/id/eprint/49801

Actions (login required)

View Item View Item