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Abstract—Recently Genetic Algorithms (GAs) have 
frequently been used for optimizing the solution of 
estimation problems. One of the main advantages of 
using these techniques is that they require no knowledge 
or gradient information about the response surface. The 
poor behavior of genetic algorithms in some problems, 
sometimes attributed to design operators, has led to the 
development of other types of algorithms. One such class 
of these algorithms is compact Genetic Algorithm (cGA), 
it dramatically reduces the number of bits reqyuired to 
store the poulation and has a faster convergence speed. 
In this paper compact Genetic Algorithm is used to 
optimize the maximum likelihood estimator of the first 
order moving avergae model MA(1). Simulation results 
based on MSE were compared with those obtained from 
the moments method and showed that the Canonical GA 
and compact GA can give good estimator of �� for the 
MA(1) model. Another comparison has been conducted 
to show that the cGA method has less number of function 
evaluations, minimum searched space percentage, faster 
convergence speed and has a higher optimal precision 
than that of the Canonical GA. 

 
Keywords-Moving Average (MA), Likelihood Function, 
Moment Estimation Method, Canonical Genetic Algorithm 
(CGA), compact Genetic Algorithm (cGA), Mean Square 
Error (MSE). 

I. INTRODUCTION 
One of the most famous procedures for the solution of 

optimization problems is Genetic Algorithms (GAs). GA is 
composed mainly of three steps: recombination, crossover 
and mutation. By maintaining a population of solutions, GA 
can be viewed as implicitly modeling of the solutions seen in 
the search process. In the standard GA, new solutions are 
generated by applying randomized recombination operators 
on two or more high-quality individuals of the current 
population [1]. These recombination operators, such as one-
point, two-point or uniform crossover, randomly selected 
non- overlapping subsets of two “parent” solutions to form 
“children” solutions. 

The poor behavior of genetic algorithms in some problems, 
sometimes attributed to designed operators, has led to the 
development of other types of algorithms such as the 
Probabilistic Model Building Genetic Algorithms 
(PMBGAs) or Estimation of Distribution Algorithms 
(EDAs). They are a class of algorithms which have been 
developed recently to preserve the building blocks [2]. The 
principal concept in these new techniques is to prevent the 
distribution of partial solutions contained in a solution by 
building a probabilistic model [2] [3] [4]. To name just a 
few, instances of EDA algorithms include the Population-
based Incremental Learning (PBIL) [5] [6] and the compact 
Genetic Algorithm (cGA) [7]. The compact GA represents 
the population as a probability (distribution) vector (PV) 
over the set of solutions and is operationally equivalent to 
the order-one behavior of the simple GA with uniform 
crossover. It processes each gene independently and requires 
less memory than simple GA [7] [2]. As a case study to 
investigate the relative performance of cGA for optimizing 
the solution of estimation problem, we have utilized cGA for 
optimizing the maximum likelihood �����	
 ���� function 
of the first order moving average model MA(1). 

A time series is an ordered sequence of observations in an 
equal interval space; this ordering is generated through time 
or other dimensions such as sapce. Time series occur in a 
variety of fields (such as engineering, economics and 
agriculture). As one of the    distinguished stochastic models 
which represent time series is the simple moving average 
and it is also called a first order moving average, denoted by 
MA(1) because it contains just one parameter, 	. A 
generalization of the MA(1) model is the ��� order moving 
average which is denoted by MA(q) and takes the formula [8] 

                 ���� � � �� � �	������ � ���	�����                  (1) 

                                        �� � �	�����                               (2)   	��� � � ��	�� � ���	����� 

where ������  �!�"
 ���, meaning that the �� are 
identically, independently distributed, each with a normal 
distribution having mean 0 and the same variance. This 
model employes q+1 unknown parameters 	�
 	
 # 
 	�
 �� 
that are estimated from the data. The moving average 
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process is stationary for any value of 	�
 	
 # 
 	�, that is, 
the mean and the variance of the underlying process are 
constant and auto-covariance’s depends only on the time lag. 
But many economic and business time series are somtimes 
considered to be non-stationary. Non-stationary time series 
can occur in many different ways. Sometimes the series has 
a non-stationary behavior about a fix mean, and hence its 
behavior can be represented by a model which calls for  �� 
difference of the process to be stationary. In practice d is 
usually 0, 1, or at most 2. The difference provides a powerful 
model for describing stationary and non-stationary time 
series and it is called an integrated moving average (IMA) 
process or ARIMA of order �"
  
 ��. The process which is 
defined by first order, is known as ARMA�"
  
 ��, it takes 
the formula  

                                $� � ��� ��	�����                              (3) 

or in its operator form: 

                                    $� � �	�����                                   (4) 

where $� � �%&�� and the moving average operator 	��� �� ' 	�� ' 	� ' �' 	��� , here the moving average 
process is stationary for any values of 	�
 	
 # 
 	�. 

This model will be invertible if the root of �� � 	�� � "� 
lies outside the unit circle; an inertible MA is time reversible, 
so we can get that (	�( ) �. Moments of this stationary 
model are: 

Mean Function  
 
                                            E(Z) = 0                                   (5) 
Variance Function 
  
                     *+ � ,�-���� � � �� '�	����                        (6) 

Auto-Covariance Function 

                          *. � /�	��� 0 � �" 0 1 �2                              (7) 

 

            Auto-Correlation Function 

                                         �3. � � 4 � 0 � "�56�7568 0 � �" 9: $ ;                               (8) 

We can show that the marginal distribution of time series 
that has MA(1) model is ����!�"
 �� ' 	����� if ����!�"
 ���. Estimation is the second step in analysis of 
the time series. It indicates an effecient use of the data to 
make inferences about the parameters conditional to the 
adequacy of the entrtained model. ARMA models can be 
difficult to estimate if the parameter estimates are not within 
the appropriate range, a moving average model’s residual 
terms will grow exponentially. The calculated residuals for 
later observations can be very large or can overflow. This 
can happen either because of  improper starting values being 
used or because the iterations moved away from reasonable 
values. Moreover, our model is nonlinear because �� �� ���56<�, so there is no direct method that can handle these 
limitations, but all suitable methods are indirect methods 

(Iterative method) which start with an initial value and then   
this value is modified iteratively by using some numerical 
algorithms. The numerical method gives an approximate 
estimator with some accuracy.  

Recently, B. Hussain [9] [10] proposed the use of Canonical 
Genetic Algorithm (CGA) for optimizing the maximum 
likelihood function �����	
 ���� of the first order moving 
average MA(1) model. And its results were compared with 
the results obtained by the moment estimator method. 

In this paper we introduce a new evolutionary way to 
estimate the same model by using the compact Genetic 
Algorithm (cGA). Droste [11] proofed that cGA is 
applicable to be used for optimizing most of the linear 
functions such One-Max in the optimal expected runtime. In 
this paper we are interested in the behavior of the cGA for 
non-linear functions in comparison with CGA according to 
the number of function evaluations taken, solution quality, 
the percentage of the search space searched until 
convergence and the convergence speed.  

The rest of the paper is organized as follows. Section 2 
explains the problem formulation of maximum likelihood 
estimator. Section 3 briefly describes the standard cGA. 
Section 4 presents the simulation results obtained from 
applying CGA, cGA and moment method for optimizing the 
model under study. Section 6 concludes the paper.   

II. PROBLEM FORMULATION 
Maximum likelihood estimator (MLE) is a standard 

approach to parameter estimation and inference in statistics; 
it is a method that finds the most likely value for the 
parameter based on the data set collected, in particular in 
non-linear modeling with non-normal data. MLE has many 
optimal properties in estimation: sufficiency (complete 
information about the parameter of interest contained in its 
MLE estimator); consistency (true parameter value that 
generated the data recovered asymptotically, i.e. for data of 
sufficiently large samples); efficiency (lowest-possible 
variance of parameter estimates achieved asymptotically); 
and parameterization invariance (same MLE solution 
obtained independent of the parameterization used) [12]. 

Assume that a time series which is denoted by ��&7�
 # 
 �+
 ��
 �
 # 
 �= is generated by an IMA(1,1) model 
over N= n + d original observations z. From these 
observations, a series $ � � >$�
 $
 # 
 $=? of n = N – d is 
generated where $� � @&���and n is the sample size. The 
stationary mixed ARMA(0,1) model in Eq.7 is rewritten as 
[13] 

                                  �� � �$� '�	�����                            (9) 

where A�$�� � ". Suppose that >��?�has the normal 
ditribution with zero mean and constant variance equal to �� 
, then the likelihood function can be written as follows [13]:                    

                   � � � �BC���D8�EF�+
��E68��9GH I�J�56�KL8 M            (10) 

The logarithmic likelihood function is given by: 

          ����� � �� = ��BC��� '�� ����� � 	�� �� N�56�KL8       (11) 
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where 

                       �O�	�� � �P ���	�(�+
 	�
 ��=�Q�                   (12) 

 

is the sum squares errors and R��(�	�
 $S � AR��(�	�
 $�S 
denotes the expectation of �� conditional on 	�and w. The 
sum squares of errors can be found by unconditional 
calculation of the [a]’s which are computed recursively by 
taking expectations in Eq.12, it is also called Least Square 
Estimate (LSE) in which the parameter estimated is obtained 
my minimizing the sum of square in Eq.12, it usually 
provides very close approximation to the maximum 
likelihood estimator. Back-forecasting is a popular 
technique, it estimates the parameters which are crudely put 
into the model and run backwards in time; a back-calculation 
provides the values T$�UV
 W � "
�
B
 #�this back-forecasting 
is needed to start off the forward recursion. For moderate 
and large values of n, Eq.12 is dominated by O�	��XB�� and 
thus the contours of the unconditional sum squares function 
in the space of the parameters 	 are very nearly contours of 
likelihood and log-likelihood. 

For a causal and finite auto-regressive equation, the method 
of moment estimators according to the Yule-Walker 
equations almost coincides with the least squares or 
maximum Gaussian likelihood estimators and their 
consistency as well as their asymptotic normality may be 
established. The standard Yule-Walker equations, as they are 
known for an auto-regression, are generalized to involve the 
moments of a moving-average process indexed on any 
number of dimensions [14]. It is obtained by equating a 
sample moment such as sample mean��Y , sample variance�*Z+, 
and sample ACF (Auto-correlation Function) 3[\ to their 
theoretical values counterparts and solving the resultant 
equations. 

For the presented model, the estimate of parameters can be 
obtained by equating sample moments to their theoretical 
values. Approximate values for the parameters are obtained 
by substituting the estimators -. for�3..                             

                    3[. � -. � � P �]^�]_��]^`a�]_�Dba^c6P �]^�]_�D̂c6                          (13) 

Hence, from Eq.8 and the correlation function 3 � �5�756�we 
get [13]: 

                             3[� � -� � � �5�6�75�68                                     (14) 

and                      	d� � � ��ef��gh68h6 ���                                  (15) 

where 	d� is the value that makes i� � j-� > 0 and E	dE �) �. 

III. THE COMPACT GENETIC ALGORITHM (cGA) 
The compact Genetic Algorithm (cGA) is similar to the 
PBIL (population Based Incremental Learning) but requires 
fewer steps, fewer parameters and less of a gene sample [11]. 

The cGA manages its population as a probability vector (PV) 
over the set of solutions (i.e., only models its existence), 
therby mimicking the order-one behavior of the sGA with 
uniform crossover using a small amount of memory [1] [15]. 

 

 

 

 

 

 

 

 

 

 

 

  

 

           Figure 1. Pseudo code fashion of the cGA 

Figure 1 and 2 describes the pseudo-code and flowchart of 
the cGA. The values of PV H\� k R"
�S, l\� �
# 
 �, where l 
is the number of genes (i.e., the length of the chromosome), 
measures the proportion of “1” alleles in the ��� locus of the 
simulated population [2][15].The PV is initially assigned 0.5 
to represent a randomly generated population. In every 
generation (i.e., iteration), competing chromosomes are 
generated on the basis of the current PV, and their 
probabilities are updated to favor a better chromosome (i.e, 
winner). It is noted that the generation of chromosomes from 
PV simulates the effects of crossover that leads to a 
decorrelation of the population’s genes. In a simulated 
population of size n, the probability H\  is increased 
(decreased) by � �m �when the ��� locus of the winner has an 
allel of “0”(“1”). If both the winner and the loser have the 
same allele in each locus, then the probability remains the 
same. This scheme is equivalent to (steady-state) pair-wise 
tournament selection [1]. The cGA is terminated when all the 
probabilities converge to zero or one. The convergent PV 
itself represents the final solution. It seen that the cGA 
requires �� n � �op�� ' �� bits of memory while the sGA 
requires � n � bits [1]. Thus, large population size can be 
effectively exploited without unduly compromising on 
memory requirements [15]. 

A.    Individual Initialization and Encoding:  

Certain restrictions are defined on the encoding scheme: 

1. cGA needs in every step two random numbers, each 
having a bit-string (0’s and 1’s) of fixed length 
l=15 bits. Two individuals a and b are generated: 
they are two identical chromosomes working in 
parallel, but using different initial seeds. Each 
individual affectionately known as a critter 
represents an element with the domain of the 

Parameters.      n: population size         l: chromosome length 
 
Step1.    Initialize probability vector  
               For i: = 1 to l do p[i]:= 0.5; 
 
Step2.   Generate two chromosomes from the probability vector 
             a:= generate(p);          b:= generate(p) 
 
Step3.    Let them compete 
              winner, loser := compete (a, b); 
 
Step4.    Update the probability vector 
               for i:=1 to l do  
              if   winner [i]  ≠  loser[i]   then 
                                                          if   winner[i]  == 1 then           
                                                                  p[i]:= p[i] + 1/n 
                                                          else p[i] := p[i] – 1/n ; 

Step5.   Check if the probability vector has converged. Go to Step 
2, if it is not satisfied. 

Step6.   The probability vector p[i] represents the final solution. 
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solution space of the optimization problem. The 
chromosome of a given critter is the only source for 
of all the information about the corresponding 
solution. To apply the cGA to real-values 
parameters optimization problems of the form q r �sRt\
 ,\S u v��t\ ) ,\�, the bit-strings is 
logically divided into n segments of (in most cases) 
equal length �w�� � ��w� and each segment is 
interpreted as the binary code of the corresponding 
object variable G\ k Rt\
 ,\S. A segment decoding 
function x\y >"
�?z{ u � Rt\
 ,\S typically looks like  

     
                       
             x\��\���\ #��\z{� � �t\ ' � |}�~}�w�� TP�\UBU��V , 
 

where ( �\���\ �#��\z{� denotes the ���-segment of 
an individual �� � � ����
 # 
 �=z{� k � �=z{ � � �z: 

2. Every field of the probability vector PV is nitialized 
to 0.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flowchart of cGA 

B.   Fitness Evaluation:  

A fitness function is a numerical value associated with each 
individual to measure the goodness of the solution. Each 
individual a and b is converted into a number between 0 and 
32768; >���������9���B���Ho�����9�,��t9�?: So, individual 
with higher fitness value represents better solution, while 
lower fitness value is attributed to the individual whose bit-
string represents inferior solution. Combinig the segment-
wise decoding function to individual-decoding function�x ��x� n #�n x=, [16] fitness values are obtained by setting 

                             ����� � �� Iq�x�����M                          (16) 

where � denotes a scaling function ensuring positive fitness 
values such that the best individual receives largest fitness. 

C.   Compete: 
Compete is a procedure that compares 2 real-values 
(meaning 2 bit-strings), a and b and has an output either ‘1’ 
(if a > b), or ‘0’ (if a < b). The comparison depends on the 
Fitness Evaluation module. 

D.   Probability Update 
As the population has n chromosomes, the probability vector 
PV must be able to be increased or decreased by a minimal 
value of�� �m . There is no need to represent the probability as 
the float number actually is.  

As the probability has always values between ‘0’ and ‘1’ and 
can be written as the sum of the negative powers of 2, with 
‘0’ or ‘1’ as coefficients, the probability vector contains the 
bit-string of these coefficients. Increasing and decreasing it 
by the minimal value means to change at least one value of 
this bit-string. Technically, the p[i] is updated as follows: 

 if��q� � q��then 

                 if a[i] = 1 then  p[i] = min (1, p[i] +
n

1
) 

                if a[i] = 0 then p[i] = max (0, p[i] -
n

1
) 

 else  

              if b[i] = 1 then p[i] = min (1, p[i] +
n

1
) 

               if b[i] = 0 then p[i] = max (0, p[i] -
n

1
) 

So, the probability vector PV (p[i]) stores the bit-string that 
represents the probability. The operations that it needs to 
perform are increased and decreased the bit-string by one 
unit. 

IV. RESULTS AND DISCUSSION 
This section presents simulation results and compares the 
compact GA and Canonical GA in terms of solution quality, 
the number of function evaluations and the percentage of the 
searched space taken for the likelihood estimator of MA(1). 
Furthermore, the results of these former methods have been 

Start 

Intialize Probability Vector 
P[i]:= 0.5 

Generate two chromosomes a and b 
from the probability vector 

Compete a and b 

Evaluate a and b 

Winner[i]  �Loser[i]  

Winner[i]  � ��? 

P[i]:=P[i]+1/n

P[i]:=P[i]-1/n 

P[i]  

Converge? End 
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compared with those obtained by simulating the moment 
method with 1000 runs [9] [10]. The initial population genes 
were randomly assigned with values within the range [-1.0, 
1.0]. The simulation results performed are based on different 
sample size (i.e. n= 25, 50, 100), 	 is set to 
(�":�
 �":j
 �":�). The random variables ���� are generated 
by using Box-Muller formula and sample of size n generated 
by Eq. 3. The comparison has been based on Mean Square 
Error��FOA � ,�-�	� ' �����. All simulations are averaged 
over 100 runs. 

The canonical GA used binary tournament selection without 
replacement, and uniform crossover with exchange 
probability��� � ":��. Inversion mutation is used with 
probability��� � ":""��. The size of population is set to 50. 
All runs end when the population fully converged that is 
when the individuals have the same alleles at each gene 
position.  Putting this all together we obtain a CGA as 
summarized in Table 1. 

 

 Table 1: Tableau describing the CGA for the likelihood         
estimator  

 

As opposed to CGA, in compact GA the population size �N 
and the chromosome length l are set to 30-50 and 15 
respectively. The algorithms start with a probability 
register initialized with 0.5, so that at the beginning, there 
are equal chances for every bit of the future chromosome 
to be either’0’ or ‘1’ at the end of the algorithm. The 
objective function decides whether it is better to increase 
or decrease the entry in the probability register. Table 2 
illustrates the results and the simulations on a set of data 
that gives some ideas of the behavior of compact GA, Bit-
weight cGA, Canonical GA and Moment Method. 

From Table 2 we can see that the MSEs of cGA, and CGA 
are relatively competing in a small range of differences but 
they are all smaller than those obtained from the moment 
estimator. Consequently, they are more reliable than the 
moment method in estimating the parameters of the model 
under study. On the other hand, the value of the MSE 
decreases when the sample size increases for all the adopted 
methods. Moreover, from the behavior of MSE of cGA and 
CGA it can be discerned that when the model parameters�	� 

take positive values is smaller than when these parameters 
are assigned to a negative ones. 

Table 3 illustrates the average simulation results of 
Canonical GA and compact GA respectively with population 
size ��N =50) over 100 runs, where (F is the number of 
function evaluations taken until convergence for the various 
numbers of generations) and (PSS is the percentage % of the 
searched space) and it is calculated as follows:  

 

                                �OO � ����n������JJ� n �""�                      (17) 

where 

NC = number of individuals being evaluated per generation 

NG = number of generations until convergence 

TSS = total search space size 

and (�������������������� ¡� � �Bz�� 
       (¢�: �£�����¤: ¥� ¢¦��§��¨���© =  �N  in CGA and 2 in 
compact GA) 

 

 

 

Formally speaking, there is an evidence that the two 
algorithms are quite different, while CGA has a memory 
requirement of���N n ���¥ ��, the cGA requires 
only���op�N �n ���¥ �� and in the number of function 
evaluations CGA requires (�N n !ª��, while cGA requires 
only��B n !ª��. As one can see from the results illustrated in 
Table 3, the difference between cGA for both the number of 
function evaluations and the percentage of the searched 
space until convergence in which cGA exhibits better 

Representation Binary bit string of length l 
Recombination Two point crossover 
Recombination 
Probability 

75% 

Mutation Each value inverted with 
independent probability �� per 
position 

Mutation Probability 0.005% 
Parent Selection Tournament selection (best out 

of two) 
Population size  50 
Number of off spring  50 
Initialization Random  
Termination 
Condition 

No improvement in the last 10 
generations 

Sample 
Size (n) 

�« MSE of 
moment 
estimator 

MSE of CGA 
estimator 

MSE of cGA 
estimator 

For 
best �« 

For 
average �« 

For 
best �« 

For 
average �« 

 
 
25  

0.1 0.4353 0.2866 0.2235 0.3001 0.255 
-0.1 0.6743 0.8637 0.513 0.738 0.5021 
0.4 0.5602 0.1448 0.06113 0.1365 0.0563 
-0.4 0.7405 0.40122 0.3634 0.334 0.3874 
0.7 1.1845 0.2331 0.1181 0.229 0.1213 
-0.7 1.3421 0.4197 0.36502 0.4201 0.3771 

 
 
50 
 

0.1 0.2163 0.1872 0.2144 0.2163 0.2182 
-0.1 0.3421 0.357 0.2905 0.3412 0.3301 
0.4 0.50602 0.0785 0.02353 0.0843 0.0283 
-0.4 0.4765 0.3231 0.20019 0.3415 0.19202 
0.7 1.0845 0.2056 0.1004 0.1987 0.1045 
-0.7 1.1233 0.2543 0.29902 0.2455 0.2712 

 
 
 
100 

0.1 0.0799 0.01334 0.0763 0.0224 0.0654 
-0.1 0.1038 0.2705 0.1225 0.2425 0.1446 
0.4 0.3602 0.0145 0.0122 0.0133 0.0113 
-0.4 0.3212 0.2806 0.0351 0.2543 0.0344 
0.7 1.01845 0.1232 0.0677 0.1336 0.0745 
-0.7 0.9999 0.1408 0.0123 0.1581 0.0168 

Table 2: MSE for Canonical GA, compact GA and moment 
method for different values of sample size and model parameter.
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performance than in the average of both cases. It is also 
worth noting that the number of function evaluations and the 
searched space are both decreases when the number of 
sample size increases. 

 

 
 
 
 
 

 
From Figure 3 and 4 it is clear that the quality of solutions 
and convergence speed found by the cGA is better than the 
CGA. The results suggest that the cGA performs the best and 
the CGA performs the worst.  
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

 

 

  

0 10 20 30 40 50 60
-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

No. of Generations

O
bj

ec
tiv

e 
fu

nc
tio

ns

 

 

CGA

cGA

0 10 20 30 40 50 60
-180

-160

-140

-120

-100

-80

-60

-40

No. of Generations

O
bj

ec
tiv

e 
F

un
ct

io
ns

 

 

CGA

cGA

0 10 20 30 40 50 60
-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

No. of Generations

O
bj

ec
tiv

e 
F

un
ct

io
ns

 

 

CGA

cGA

Sample 
Size (n) 

�« CGA cGA 
F PSS F PSS 

 
 
25 
 

0.1 3200 9.7656 124 0.3784 
-0.1 4150 12.6647 130 0.3967 
0.4 3000 9.1552 116 0.3540 
-0.4 3750 11.4440 124 0.3784 
0.7 3400 10.3759 138 0.4211 
-0.7 3900 11.9018 140 0.4272 

 
 
50 
 

0.1 3200 9.7656 122 0.3723 
-0.1 3650 11.1389 126 0.3845 
0.4 2800 8.54492 100 0.3051 
-0.4 3500 10.6811 120 0.3662 
0.7 3250 9.9182 128 0.3906 
-0.7 3350 10.2233 120 0.3662 

 
 
100 
 

0.1 2250 6.8664 96 0.2929 
-0.1 3000 9.1552 106 0.3234 
0.4 2450 7.4768 98 0.2990 
-0.4 3250 9.9182 116 0.3540 
0.7 2650 8.0871 102 0.3112 
-0.7 2850 8.6975 110 0.3356 

    -b- Best Objective function of 	�= 0.4

    -a- Best Objective function of 	�= 0.1

        -c- Best Objective function of  	�= 0.7

Figure 3. Results of best objective function (squared Error)  of 
60 generations over 5 Runs with n =25 

Table 3: Average simulation results of Canonical GA and 
compact GA based on the number of function evaluations F 
and the percentage of the searched space PSS 
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V. CONCLUSION 

In this paper, we investigate the performance of the compact 
Genetic Algorithm cGA for estimating the parameter of log-
likelihood function �����	
 �����of first order moving 
average model MA(1). Based on MSE, cGA provides 
effective results for three random samples with different 
sizes (n= 25, 50, 100) and 	 is set to (�":�
 �":j
 �":�) in 
comparison with the CGA and Moment Method. Simulation 
results show that the cGA has a higher optimal precision or 
at least the same as that obtained from the CGA, at same 
time, the cGA needs minimum searched space percentage 
and less number of function evaluations than that of the 
CGA. 
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