Shah, Mohammad Nazri Md and Azman, Raja Rizal and Chan, Wai Yee and Ng, Kwan Hoong (2024) Opportunistic Extraction of Quantitative CT Biomarkers: Turning the Incidental Into Prognostic Information. Canadian Association of Radiologists Journal, 75 (1). pp. 92-97. ISSN 0846-5371, DOI https://doi.org/10.1177/08465371231171700.
Full text not available from this repository.Abstract
The past two decades have seen a significant increase in the use of CT, with a corresponding rise in the mean population radiation dose. This rise in CT use has caused improved diagnostic certainty in conditions that were not previously routinely evaluated using CT, such as headaches, back pain, and chest pain. Unused data, unrelated to the primary diagnosis, embedded within these scans have the potential to provide organ-specific measurements that can be used to prognosticate or risk-profile patients for a wide variety of conditions. The recent increased availability of computing power, expertise and software for automated segmentation and measurements, assisted by artificial intelligence, provides a conducive environment for the deployment of these analyses into routine use. Data gathering from CT has the potential to add value to examinations and help offset the public perception of harm from radiation exposure. We review the potential for the collection of these data and propose the incorporation of this strategy into routine clinical practice. Graphical Abstract Les deux dernieres decennies ont ete marquees par une augmentation significative de l'utilisation de la TDM avec un accroissement correspondant de la dose moyenne d'irradiation de la population. L'augmentation du recours a la TDM a entraine une amelioration de la certitude diagnostique pour des affections qui n'etaient pas evaluees de maniere habituelle par TDM, comme les cephalees, les dorsalgies et les douleurs thoraciques. Des donnees non utilisees, sans rapport avec le diagnostic principal et incorporees a ces examens d'imagerie, offrent la possibilite d'avoir des mesures specifiques des organes qui peuvent servir a etablir un pronostic ou un profil de risque pour des patients atteints d'affections tres diverses. Recemment, une disponibilite accrue de la puissance informatique, de l'expertise et des logiciels de segmentation et de mesure automatisees, assistee par une intelligence artificielle, fournit un environnement favorable au deploiement de ces analyses dans le cadre d'un usage de routine. La collecte de donnees provenant de TDM pourrait ajouter de la valeur aux examens et contribuer a compenser la perception du public sur les dangers de l'exposition aux radiations. Dans cet article, nous passons en revue le potentiel represente par la collecte de ces donnees et nous proposons l'incorporation de cette strategie dans la pratique clinique reguliere.
Item Type: | Article |
---|---|
Funders: | UNSPECIFIED |
Uncontrolled Keywords: | computed tomography; biomarkers; prognostication; risk stratification; data value |
Subjects: | R Medicine > R Medicine (General) |
Divisions: | Faculty of Medicine > Biomedical Imaging Department |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 08 Nov 2024 08:26 |
Last Modified: | 08 Nov 2024 08:26 |
URI: | http://eprints.um.edu.my/id/eprint/45700 |
Actions (login required)
View Item |