Hamidon, Tuan Sherwyn and Idris, Nor Najhan and Adnan, Rohana and Haafiz, M. K. Mohamad and Zahari, Azeana and Hussin, M. Hazwan (2024) Oil palm frond-derived cellulose nanocrystals: Effect of pretreatment and elucidating its reinforcing potential in hydrogel beads. International Journal of Biological Macromolecules, 262 (2). p. 130239. ISSN 0141-8130, DOI https://doi.org/10.1016/j.ijbiomac.2024.130239.
Full text not available from this repository.Abstract
Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNCOPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4chlorophenol and other organic contaminants.
Item Type: | Article |
---|---|
Funders: | cience and Technology Development Fund (STDF) Ministry of Higher Education & Scientific Research (MHESR) Ministry of Higher Education, Research & Innovation, Oman (PRGS/1/2022/STG05/USM/02/1), Universiti Sains Malaysia |
Uncontrolled Keywords: | Oil palm frond; Cellulose nanocrystal; Soda pulping; Autohydrolysis; Adsorption; Hydrogel bead |
Subjects: | Q Science > Q Science (General) Q Science > QD Chemistry |
Divisions: | Faculty of Science > Department of Chemistry |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 06 Nov 2024 03:40 |
Last Modified: | 06 Nov 2024 03:40 |
URI: | http://eprints.um.edu.my/id/eprint/45611 |
Actions (login required)
View Item |