Shirato, Yusuke and Hsueh, An-Ju and Ab Mutalib, Nurul Asyikeen and Deng, Yi and Suematsu, Ryohei and Kato, Azusa and Kearney, Bradley M. and Kinoshita, Manabu and Suzuki, Hiroaki (2024) Bipolar Clark-Type Oxygen Electrode Arrays for Imaging and Multiplexed Measurements of the Respiratory Activity of Cells. ACS Omega, 9 (9). pp. 10825-10833. ISSN 2470-1343, DOI https://doi.org/10.1021/acsomega.3c09802.
Full text not available from this repository.Abstract
Various miniature Clark-type oxygen electrodes (COEs), which are typically used to measure dissolved oxygen (DO) concentration in cellular respiration, have been developed since the 1980s. Arrays with individually addressable electrodes that constitute the sensor were used for various applications. However, the large number of leads and contact pads required for connecting the electrodes and the external instrument complicate the electrode layout and make the operation of integrated COE arrays challenging. Here, we fabricated closed bipolar electrochemical systems comprising 6 x 8 and 4 x 4 arrays of COEs for imaging and multiplexed detection. The cathodic compartment was sealed with a hydrophobic oxygen-permeable membrane to separate the internal electrolyte solution from the sample solutions. Using the bipolar Clark-type oxygen electrode (BCOE) arrays and electrochemiluminescence (ECL), we measured the DO concentration at each cathode. The results revealed that the ECL intensity changed linearly with the DO concentration. In addition, we used ECL imaging to investigate the respiratory activity of Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) in suspensions with different cell densities. The ECL images showed that the ECL intensity changed noticeably with the bacterial density. The bacterial respiratory activity was then qualitatively analyzed based on the ECL images acquired successively over a time duration. Further, we measured the antibiotic efficacy of piperacillin, oxacillin, gentamicin, and cefmetazole against E. coli and P. aeruginosa using the BCOE. We found that the ECL intensity increased with the antibiotic concentration, thus indicating the suppression of the bacterial respiratory activity.
Item Type: | Article |
---|---|
Funders: | Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of Science (21H01958) |
Uncontrolled Keywords: | Cellular Respiration; Chip; Sensor |
Subjects: | Q Science > Q Science (General) R Medicine > R Medicine (General) |
Divisions: | Faculty of Engineering > Biomedical Engineering Department |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 06 Nov 2024 01:33 |
Last Modified: | 06 Nov 2024 01:33 |
URI: | http://eprints.um.edu.my/id/eprint/45601 |
Actions (login required)
View Item |