Elastic, mechanical and thermodynamic properties of technetium-based perovskites XTcO3 (X = K, Rb) compounds

Nouri, Toufik and Khelfaoui, Friha and Amara, Kadda and Bouhemadou, Abdelmadjid and Belkharroubi, Fadila and Al-Douri, Y. (2024) Elastic, mechanical and thermodynamic properties of technetium-based perovskites XTcO3 (X = K, Rb) compounds. Physica B-Condensed Matter, 678. p. 415780. ISSN 0921-4526, DOI https://doi.org/10.1016/j.physb.2024.415780.

Full text not available from this repository.
Official URL: https://doi.org/10.1016/j.physb.2024.415780

Abstract

ab-initio calculations are employed to determine the structural, mechanical, elastic, electronic and thermodynamic properties of perovskite oxides XTcO3 (X = K, Rb). From the computed structural properties, KTcO3 and RbTcO3 are found to be stable with equilibrium lattice constants; 7.3943 Bohr and 7.4909 Bohr, respectively. From electronic structure results, a metallic character is remarked for both compounds. The determined elastic constants (C11, C12, C44) have indicated the mechanical stability of XTcO3 (X = K, Rb) compounds that is confirmed by the phonon spectra. In addition, KTcO3 is found to be isotropic and KTcO3 is nearly isotropic according the anisotropic constant A values. B/G ratio has indicated the brittleness of both compounds. Furthermore, the Helmholtz free energy (F), entropy (S) and heat capacity (CV) are determined using QHA (Quasi harmonic Approximation). Our computational indicates that XTcO3 (X = K, Rb) compounds can be used as new materials for solid oxide fuel cells and related applications.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Perovskite; Mechanical; Elastic; Thermodynamic; Electronic
Subjects: Q Science > QC Physics
Divisions: Deputy Vice Chancellor (Research & Innovation) Office > Nanotechnology & Catalysis Research Centre
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 05 Nov 2024 08:45
Last Modified: 05 Nov 2024 08:45
URI: http://eprints.um.edu.my/id/eprint/45591

Actions (login required)

View Item View Item