Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity

Rosli, Naim Asyraf and Al-Maleki, Anis Rageh and Loke, Mun Fai and Tay, Sun Tee and Rofiee, Mohd Salleh and Teh, Lay Kek and Salleh, Mohd Zaki and Vadivelu, Jamuna (2024) Exposure of Helicobacter pylori to clarithromycin in vitro resulting in the development of resistance and triggers metabolic reprogramming associated with virulence and pathogenicity. PLoS ONE, 19 (3). e0298434. ISSN 1932-6203, DOI https://doi.org/10.1371/journal.pone.0298434.

Full text not available from this repository.
Official URL: https://doi.org/10.1371/journal.pone.0298434

Abstract

In H. pylori infection, antibiotic-resistance is one of the most common causes of treatment failure. Bacterial metabolic activities, such as energy production, bacterial growth, cell wall construction, and cell-cell communication, all play important roles in antimicrobial resistance mechanisms. Identification of microbial metabolites may result in the discovery of novel antimicrobial therapeutic targets and treatments. The purpose of this work is to assess H. pylori metabolomic reprogramming in order to reveal the underlying mechanisms associated with the development of clarithromycin resistance. Previously, four H. pylori isolates were induced to become resistant to clarithromycin in vitro by incrementally increasing the concentrations of clarithromycin. Bacterial metabolites were extracted using the Bligh and Dyer technique and analyzed using metabolomic fingerprinting based on Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-ToF-MS). The data was processed and analyzed using the MassHunter Qualitative Analysis and Mass Profiler Professional software. In parental sensitivity (S), breakpoint isolates (B), and induced resistance isolates (R) H. pylori isolates, 982 metabolites were found. Furthermore, based on accurate mass, isotope ratios, abundances, and spacing, 292 metabolites matched the metabolites in the Agilent METLIN precise Mass-Personal Metabolite Database and Library (AM-PCDL). Several metabolites associated with bacterial virulence, pathogenicity, survival, and proliferation (L-leucine, Pyridoxone Vitamine B6], D-Mannitol, Sphingolipids, Indoleacrylic acid, Dulcitol, and D-Proline) were found to be elevated in generated resistant H. pylori isolates when compared to parental sensitive isolates. The elevated metabolites could be part of antibiotics resistance mechanisms. Understanding the fundamental metabolome changes in the course of progressing from clarithromycin-sensitive to breakpoint to resistant in H. pylori clinical isolates may be a promising strategy for discovering novel alternatives therapeutic targets.

Item Type: Article
Funders: Malaysian Ministry of Higher Education, Malaysia, Helicobacter Research Laboratory (UM Marshall Centre) at the Universiti Malaya, Universiti Malaya
Uncontrolled Keywords: Lipid-Metabolism; Sphingolipids; Expression; Genes; Mannitol; Survival; Proline
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Medicine
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 22 Oct 2024 07:21
Last Modified: 22 Oct 2024 07:21
URI: http://eprints.um.edu.my/id/eprint/45478

Actions (login required)

View Item View Item