Feasibility of determining external beam radiotherapy dose using LuSy dosimeter

Wahabi, Janatul Madinah and Wong, Jeannie Hsiu Ding and Mahdiraji, Ghafour A. and Ung, Ngie Min (2024) Feasibility of determining external beam radiotherapy dose using LuSy dosimeter. Journal of Applied Clinical Medical Physics, 25 (6). e14387. ISSN 1526-9914, DOI https://doi.org/10.1002/acm2.14387.

Full text not available from this repository.
Official URL: https://doi.org/10.1002/acm2.14387

Abstract

IntroductionRadiation dose measurement is an essential part of radiotherapy to verify the correct delivery of doses to patients and ensure patient safety. Recent advancements in radiotherapy technology have highlighted the need for fast and precise dosimeters. Technologies like FLASH radiotherapy and magnetic-resonance linear accelerators (MR-LINAC) demand dosimeters that can meet their unique requirements. One promising solution is the plastic scintillator-based dosimeter with high spatial resolution and real-time dose output. This study explores the feasibility of using the LuSy dosimeter, an in-house developed plastic scintillator dosimeter for dose verification across various radiotherapy techniques, including conformal radiotherapy (CRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT), and stereotactic radiosurgery (SRS).Materials and methodsA new dosimetry system, comprising a new plastic scintillator as the sensing material, was developed and characterized for radiotherapy beams. Treatment plans were created for conformal radiotherapy, IMRT, VMAT, and SRS and delivered to a phantom. LuSy dosimeter was used to measure the delivered dose for each plan on the surface of the phantom and inside the target volumes. Then, LuSy measurements were compared against an ionization chamber, MOSFET dosimeter, radiochromic films, and dose calculated using the treatment planning system (TPS).ResultsFor CRT, surface dose measurement by LuSy dosimeter showed a deviation of -5.5% and -5.4% for breast and abdomen treatment from the TPS, respectively. When measuring inside the target volume for IMRT, VMAT, and SRS, the LuSy dosimeter produced a mean deviation of -3.0% from the TPS. Surface dose measurement resulted in higher TPS discrepancies where the deviations for IMRT, VMAT, and SRS were -2.0%, -19.5%, and 16.1%, respectively.ConclusionThe LuSy dosimeter was feasible for measuring radiotherapy doses for various treatment techniques. Treatment delivery verification enables early error detection, allowing for safe treatment delivery for radiotherapy patients.

Item Type: Article
Funders: Ministry of Higher Education Fundamental Research (FRGS/1/2019/SKK03/UM/01/1), Malaysia Ministry of Higher Education Fundamental Research Grant Scheme, Clinical Oncology Unit, University of Malaya Medical Centre (UMMC)
Uncontrolled Keywords: conformal radiotherapy; IMRT; plastic scintillator; SRS; VMAT
Subjects: R Medicine
Divisions: Faculty of Medicine
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 26 Sep 2024 03:48
Last Modified: 26 Sep 2024 03:48
URI: http://eprints.um.edu.my/id/eprint/45219

Actions (login required)

View Item View Item