
Scientific Research and Essays Vol. 5(15), pp. 1965-1977, 4 August, 2010
Available online at http://www.academicjournals.org/SRE
ISSN 1992-2248 ©2010 Academic Journals

Full Length Research Paper

Novel approach for high (secure and rate) data hidden
within triplex space for executable file

A. A. Zaidan*1, B. B. Zaidan1, O. Hamdan Alanazi2, Abdullah Gani2, Omar Zakaria2 and

Gazi Mahabubul Alam3

1Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor Darul Ehsan, Malaysia.
2Faculty of Computer Science and Information Technology, University of Malaysia, 50603, Kuala Lumpur, Malaysia.

3Faculty of Education, University of Malaya, Malaysia.

Accepted 2 July, 2010

Steganography is an art that involves the concealing of information with the aim of making the
communication invisible. Unlike cryptography, where the main aim is to secure communications from
the Snooper by encoding that data in such a way that it becomes visible but not understood. In this
paper, we propose a framework that will integrate both steganographic and cryptographic approaches
within a hyiperd space of an EXE file. This approach will be used for highly securing data that is hidden;
using both the advance encryption standard (AES) method and statistical technique (ST) computation.
To further address the security issues, we will use the EXE as a cover for the hidden data; the
executable file cover was selected in this approach because of its ability to hide huge amounts of data
within a hyiperd space of an EXE file which in turn overcomes the problem of the data hiding quantity.
The use of the EXE file also makes sure that the changes made to it will not be detected by anti-virus
and its functionality will not be negatively affected after the hiding process, features of the short-term
responses were simulated, and indicated that the size of the hidden data does depend on the size of the
Unused Area1+ Unused Area 2 + Image Pages; within the cover file which is equal to 28% of the size of
the exe.file before the hiding process. Most antivirus systems do not allow direct writing into
executable files, so the approach of the proposed system is to prevent the hidden information from
being disclosed by these systems and the exe.file still functioning normally after the data hiding
process.

Key words: Steganography, hidden data, encryption, advance encryption standard (AES).

INTRODUCTION

Steganography is the art of concealing data during
transmition through seemingly innocent carriers in an
effort to obscure the existence of the data. The literal
meaning of the word Steganography is covered or hidden
writing as derived from Greek. Steganography plays a
substantial role in security (Ahmed et al., 2010).
However, it does not intend to replace the role of
cryptography but supplement it. In concealing a message
using Steganographic techniques lessens, the chance of
a message being detected if the message is also
encrypted, offers another layer of protection (Anckaert et

*Corresponding author. E-mail: aws.alaa@gmail.com.

al., 2005).
Therefore, some Steganographic methods integrate

both traditional Cryptography and Steganography; where
the initiator encrypts the secret message before the
overall communication process, as it is more difficult for
an attacker to detect embedded cipher text in a cover
(Artz, 2001). Several terminologies have been specifically
developed for use in the field of Steganography (Bender
and Morimoto, 1996). The adjectives 'cover', 'embedded’
and 'stego' were defined at the information hiding
workshop held in Cambridge, England. The term "cover"
refers to the description of the original and innocent
massage, data, audio, video, and so on. Steganography
is not a new science as it is quite ancient (Bassia et al.,
2001), it has been used from time in memorial by
ordinary people, spies, rulers, governments, and armies

1966 Sci. Res. Essays

(Cvejic, 2002). There are many accounts about Stegano-
graphy (Cvejic, 2004). For instance in ancient Greece,
the belly of a share (a kind of rabbit) or pigeon was used
for hiding messages using invisible ink (Yeh et al., 1999).
In addition to this, ingenious methods such as shaving
the head of a messenger and then tattooing a message
or picture on the messenger’s scalp were used (Cvejic,
2005). After the hair grew back, the message would be
concealed until the head is shaved again, while the
Egyptian employed a different approach which involved
the use of illustrations to conceal messages (Lee et al.,
2000).The information that is hidden in the cover data is
referred to as the "embedded" data, and information
hiding is a general term which is made up of several sub
disciplines (Noto, 2001). The term deals with a wide
range of problems beyond that of just embedding the
contents in a message. The term hiding here can refer to
either making the information undetectable or keeping the
existence of the information secret. Information hiding is
a technique of hiding secrets using redundant cover data
such as images, audios, movies, text documents, and so
forth. Today this method has taken a center stage in a
number of application areas (El-Khalil and Keromytis,
2004). Instances of digital video, audio and images are
progressively being embedded with imperceptible marks,
which may contain hidden signatures or watermarks that
assists in the prevention of illegal duplication (El-Khalil
and Keromytis, 2004). Thus Steganography is the
process of inserting secret messages into a cover file, so
that the existence of the messages is not apparent (Lee
et al., 2000).

Research in information hiding has tremendously
increased during the past decade with commercial
interests as the driving force (Ahmed et al., 2010).

Typically, the amount of hidden information that is
embedded in media such as image and music files is
limited. Thus these types of embedding methods can
easily be under surveillance from system managers in an
organization that needs a high level of security. This has
led to a research on new hiding techniques and cover
objects in which hidden information can effectively be
embedded. As a result of this research, the technique of
embedding information in executable files has been
explored.

Stilo and Hydan are deemed to represent common
techniques for the embedding of information in execu-
table files (Anckaert et al., 2005; El-Khalil and Keromytis,
2004). These techniques modify original files, thus allow
code signing techniques that guarantee the integrity of
the code to be used for the detection of hidden infor-
mation (Anckaert et al., 2005; El-Khalil and Keromytis,
2004). But since the level of using computers and the
computing environment has spiraled upwards, it makes
the use of executable files to become a common pheno-
menon. However, the use of code signing techniques is

not yet common (Anckaert et al., 2005; El-Khalil and
Keromytis, 2004). Silo and Hydan modify program
binaries that have been in optimization, so as to reduce
the performance levels of the program binaries (Anckaert
et al., 2005). Besides this, the amount of information to
be embedded in executable files when Silo and Hydan
methods are applied is limited; below 15% of the total
cover size because these tools determine the number of
bytes to be hidden based on the size of the program
binaries (El-Khalil and Keromytis, 2004).

Aos and Bilal modify programs by implementing a
system that commutates embeded information using both
cryptography and steganography within an unused area 1
of an exe.file (Zaidan et al., 2009).

Ahmed and Aos devised a new technique that modifies
hidden data in the Unused Area 2 within an exe.file using
computation that involve Cryptography and Stegano-
graphy (Naji et al., 2009). The aim of these two studies
was to find a secure solution for a cover file without
changing its size (Naji et al., 2009).

However, this research did not look into the anti-virus
detection of the functionality of the exe.file; they were not
able to tell if the exe.file is still functioning or not and
whether the size of the information hiding is still limited
(Ross, 1998).These are considered to be the main
challenges for hidden data in the executable files. Hence,
there is a need to carry out research on new hiding
techniques that take into consideration the efficiency of a
program using computation which involves cryptography
and steganography.

In order to deal with the above mentioned challenges of
the executable file when it is used as a cover, in this
study, we examine new methods that consider the
efficiency and the amount of information to be hidden.
We also make sure that changes made to the exe.file will
not be detected by anti-virus and the functionality of the
exe.file is not affected negatively. In addition to this, we
discuss the analysis techniques which can be applied to
detect and recover data hidden using each of these
methods.

MATERIALS AND METHODS

System overview

The most important reason behind the idea of this system is to
resolve the need for programmers to always create a back door in
the application that they develop as a temporal solution to many
problems. This ‘make shift’ solution and makes customers assume
that all programmers have the ability to hack into their system at
any time. As a result, most, if not all customers, prefer to employ
trusted programmers to build applications on their behalf.
Programmers do not create unsafe applications on purpose. On the
contrary, they too would like their application to be safe without the
need to build ethical relations with their customers.

In this system, a solution is suggested to resolve this problem;
the solution is to hide the data in the Unused Area1+ Unused Area

2 + Image Pages; within an executable file of the same system and
then another application to be retracted by the customer himself.
When Steganography is used, one needs to know all file formats in
order to find a way to hide the information in those files. This
technique is not easy because in most situations there are large
numbers of the file formats and some of them do not permit the
hiding of information in them.

System concept

The concept behind this system can be summarized as the hiding
of data or any information in the Unused Area1+ Unused Area 2 +
Image Pages; within an executable file, so there is no function or
routine (open-file, read, write, and close-file) in the operating
system to extract it. An alternative method to this operation would
be building the file handling procedure independently from the
operating system file handling routines. In this case, we need to
replace the existing file handling routines by developing a new
function which can perform according to our needs, but while
maintaining the same exe.file names.

The advantage of this method does not need any additional
functions which can be identified by the analysts, and it can be
executed remotely and is suitable for network and internet
applications.

The disadvantage of this method is that it needs to be physically
installed (cannot be operated remotely). Due to this, we choose to
implement the first concept in this paper.

System features

This system has the following features:

1. The hiding operation which involves data in the Unused Area1+
Unused Area 2 + Image Pages; within an EXE file using advanced
encryption Standard and a statistical technique which increases the
degree of security of the information hiding, is used in the proposed
system. Since the data which is embedded inside the EXE file does
not embed directly in the EXE file, it will be hidden in the triplex
space within the EXE file. Thus the attacker is not able to detect the
presence of hidden information.
2. The extraction operation: It is very difficult to extract the hidden
information just as it is difficult to detect the presence of hidden
information. This is because of three reasons:

(i) The hidden information will be encrypted before hiding it using
the AES method; this method uses a very strong 128-bit key that
would, in theory, be in a range of a military budget within 30 - 40
years. To get an idea of the current status of the AES, the following
example is given; whereby we assume that an attacker with the
capability to build or purchase a framework that uses keys at the
rate of one billion keys per second. This is at least 1 000 times
faster than the fastest personal computer in 2004. Based on this
assumption, the attacker will require about 10 000 000 000 000 000
000 000 years to try all possible keys for the weakest version.
(ii) It is impossible for the attacker to guess that there is information
hidden inside the EXE file since he cannot guess the real size of
both the EXE file and information hiding.
(iii) The information hiding should be decrypted after retracting the
information.
3. The cover file can be executed just like any other EXE file after
the hiding operation, because the hidden information already hides
Unused Area1+ Unused Area 2 + Image Pages and it cannot be
manipulated as the exe.file, therefore, the cover file is still natural,

Zaidan et al. 1967

works normally and is not effected in any way. For instance if the
cover EXE file is WINDOWES XP SETUP after the hiding
operation, it will continue working as usual, in other words, the EXE
file is installed as part of windows operating system.
4. Virus detection programmers' are not capable of distinguishing
between such files and the normal EXE, this is due to the style
used in the detection of viruses, which uses programs that avoid
additional disclosures. Even though there are many forms of
detection methods that can be employed by anti-viruses, they
mostly depend on the style of string matching and forms. Many of
these do not reveal evidence added to the signature and they only
depend on disclosed known viruses. While other methods such as
heuristics, depend on the type of expectations and the detection of
unknown viruses.

The technique used to distinguish between the added code and the
norm uses a series of directives; such as a row or a change in the
entry point of the program code. Matching refers to the evidence
found in the structure of the program when compared to its form at
the point of installing the program and this is a very cardinal aspect
in our study, because the addition of data to the triplex space may
require some changes. This is done so that the structure taken in
the process of concealment does not wind up having any changes
in its file composition and structure. This is what makes the EXE file
undetectable by Unit-Virus.

Triplex space structure

The programming used in implementing the system is known as
Java. The PE file layout is shown in Figure 1, there are three free
spaces in the PE file layout which were used for this system
(Zaidan et al., 2009), and these vacant spaces were selected for
hiding the steganography because:

1. The size of the free area 1 is same for all such files.
2. The size of the free area 2 is different for all such files.
3. The size of the image pages is different for all such files.

TESTING OF THE RESULTS

The two essential approaches for identifying test cases
are referred to as functional and structured testing. Both
of them have a number of distinct test case identification
methods which are typically known as testing methods.
Functional testing, work’s on the assumption that every
program can be considered to be a function that maps
values from its input domain to values in its output range
(Function, domain and range). This perception is
generally used in engineering (Zaidan et al., 2009). The
advantages of functional test cases are: The indepen-
dence with which the software is implemented; such that
in the event, the implementation changes, the test cases
remain useful and test case development can take place
in parallel with the implementation, by so doing, the
overall research development interval is lessened.
However, functional test cases repeatedly exhibit two
problems: There can be significant redundancies among
test cases, and this is compounded by the possibility of
gaps in untested software. This is as shown in Figure 2

1968 Sci. Res. Essays

Figure 1. Typical 32-bit portable exe.file layout.

(Naji et al., 2009).

When systems are regarded as being "black boxes",
test cases are produced and executed from the
specification of the required functionality at defined
interfaces; this means that the function of the black box is
understood only in terms of its inputs and outputs as
shown in Figure 3.

It is not necessary for the code being tested to be seen.
In some situations code will not be provided in source
code form, yet it can still generate useful test in its
absence. In addition to this, the one writing the test cases
does not require an understanding of the implementation

(Muhammad et al., 2009). Black-box testing still has
some significant advantages:

1. Since the test cases are not dependent on the
implementation, they can be written simultaneously with
or prior to the implementation. What’s more, black-box
test cases that are properly done do not need to be
modified, even if the implementation is entirely rewritten.
2. Creating black-box testing enables the programmer to
give careful thought to the specification and its
implications. Scores of specification errors are uncovered
this way.

Zaidan et al. 1969

Figure 2. Approaches to Identifying test cases.

Figure 3. Black Box.

The drawback associated with black box testing is that;
its coverage may not be high enough, because it has to
work without the implementation. However, it serves as a

starting point for writing test cases when the functional
approach to test case identification is used; the only
information that is available is the specification of the

1970 Sci. Res. Essays

software.

Process of the test

Test case one

In this stage, comparison is made between the cover file
size prior to and after the hiding operation: Table 2 shows
different sizes of the cover with different types of the
exe.files and different sizes of information for each type
of multimedia file (text, video, audio or image).

Test case two

In this stage, the test for the usage of exe.files after the
hiding operation is done: Four pictures are selected to be
used as the cover (exe.Files). The usage after the hiding
operation and these pictures is demarcated into:

i) First picture of text.
ii) Second picture of image.
iii) Third picture of video.
iv) Fourth picture of audio.

Test case three

In this stage, the testing for Scanning Results
(undetectable by antivirus software) is done: Four
pictures are selected to be used as the cover (exe files)
which are undetectable by antivirus software after the
hiding operation and these pictures are demarcated into:

i) First picture of text.
ii) Second picture of image.
iii) Third picture of video.
iv) Fourth picture for audio.

Test cases details

Test cases are worked out prior to the test being
executed, hence; inputs and expected results are known
as preconditions. The definition of software installation
required for the test is ‘Preconditions’, the definition
inputs required for the test is ‘Inputs’ and the definition of
predictable results for outputs is ‘Except Results’.

Preconditions

1. Installation (Microsoft Windows XP and above).
2. Installation (Java Net beans).

3. Installation (Microsoft Office Word Document 2003 or
2007).
4. Installation (Software Antivirus).
5. Installation (Real Player Programme).
6. Installation (Jet Audio Programme).
7. Installation (ACDSEE�Programme).
8. System application for this research.

Inputs

The system has two types of inputs as shown in the
Table 1.

1. Inputs for cover (exe.Files): Four types of the cover
(exe.Files) of different size.
2. Inputs for information hidden:

i) Four texts of different size.
ii) Four images of different size.
iii) Four videos of different size.
iv) Four audios of different size.

Expected results

1. Secure cover (exe.Files).
2. The hidden information can be of any type of
multimedia file.
3. These are used as covers (exe.Files) after the hiding
operation.
4. Antivirus software is unable to detect these covers
(exe.Files) after the hiding operation.

Explain the test cases

Test case one

This test case is shown in Table 2 of the cover files and
information hidden before and after the hiding operation
of all types of multimedia files (text, image, audio and
video), which are related to this system. These covers
(exe.Files) are selected because they are secure and
there are no limitations on the hidden file size.
From the test case in Table 2, one can conclude that:

1. The simulation shows that the size of the hidden data
does depend on the size of the Unused Area1+ Unused
Area 2 + Image Pages; within the cover.
2. The attacker can not attack the information hiding,
because he cannot guess the exe.file size in that the
exe.file size does not maintain a constant size, as seen in
Table 2 which shows different sizes of the same type of
exe.files, for instance cover file number 4 has three sizes

Zaidan et al. 1971

Table 1. Inputs for test cases.

Name of inputs Type of inputs Size of inputs/bytes
Cover 1 VM Ware player setup 4,027,802
Cover 2 SSH 532,480
Cover 3 J creater editor setup 22,806,060

Cover 4

JDK setup
JDK setup
JDK setup

68,830,610
76,445,080
81,208,728

Text 1

Word document

10,752

Text 2 Word document 10,001
Text 3 Word document 20,100
Text 4 Word document 90,888
Video 1 Real player 200,913
Video 2 Real player 25,333
Video 3 Real player 930,102
Video 4 Real player 3,998,913
Audio 1 Jet audio 160,872
Audio 2 Jet audio 20,332
Audio 3 Jet audio 750,702
Audio 4 Jet audio 2,281,008
Image 1 JPEG 120,440
Image 2 JPEG 150,833
Image 3 JPEG 500,989
Image 4 JPEG 888,431

Table 2. Different Size of the Cover with Different Type of the exe.Files and Different Size for the Information.

Before hide information

After hide

information

((size of cover after hide
information – size of cover
before hide information)/
size of cover before hide
information)+100%

Information
hidden No. of cover Size of IH/bytes Size of cover/

bytes
Size of cover/

bytes (%)

Test 1 1 10,752 4,027,802 4,038,554 0,266
Test 2 2 10,001 532,480 542,481 1,878
Test 3 3 20,100 22,806,060 22,826,160 0,088
Test 4 4 90,888 68,830,616 68,921,504 0,132
Image 1 1 120,440 4,027,802 4,148,242 2,990
Image 2 2 15,383 532,480 547,863 2,888
Image 3 3 500,989 22,806,060 23,307,049 2,196
Image 4 4 888,431 76,445,080 77,333,511 1,162
Audio 1 1 160,872 4,027,802 4,188,674 3,994
Audio 2 2 20,332 532,480 552,812 3,818
Audio 3 3 750,702 22,806,060 23,556,762 3,291
Audio 4 4 2,281,008 81,208,728 83,489,736 2,808
Video 1 1 200,913 4,027,802 4,228,715 4,988

1972 Sci. Res. Essays

Table 2. Contd.

Video 2 2 25,333 532,480 557,813 4,757
Video 3 3 930,102 22,806,060 23,736,162 4,078
Video 3 4 3,998,913 81,208,728 85,207,641 4,924

Figure 4. After the hiding operation is inside the (hiding folder), the executable file (cover 1) still works.

for the same type of the cover file.

Test case two

This test case shows the cover files after the hiding
operation of all types of multimedia files (text, image,
audio and video) as shown in (Figures 4, 5, 6 and 7)
respectively, which are related to this system, these
cover (exe.files) were selected because of their ability to

be used after the hiding operation.

Test case three

This test case shows the cover files after the hiding
operation of all types of multimedia files (text, image,
audio and video) as shown in (Figures 8, 9, 10 and 11)
respectively, which are related to this system, these
covers (exe.Files) were selected because they are

Zaidan et al. 1973

Figure 5. After the hiding operation is Inside the (Hiding Folder), the executable file (Cover 2) still works.

Figure 6. After the hiding operation is Inside the (hiding folder), the executable file (Cover 3) still works.

1974 Sci. Res. Essays

Figure 7. After the hiding operation is inside the (Hiding Folder), the executable file (Cover 4) still works.

Figure 8. Shows that the executable file (Cover 1) inside (Hiding Folder) immune to anti-virus program.

Zaidan et al. 1975

Figure 9. Shows that the executable file (cover 2) inside (hiding folder) immune to anti-
virus program.

Figure 10. Shows that the executable (cover 3) file inside (hiding folder) immune by anti-virus program.

1976 Sci. Res. Essays

Figure 11. Shows that the executable (cover 5) file inside (hiding folder) immune to anti-virus program.

undetectable by antivirus software after the hiding
operation.

DISCUSSION

1. The size of the hidden data does depend on the size of
the Unused Area1+ Unused Area 2 + Image Pages;
within the cover file which is equal to 28% of the size of
exe.file before the hiding process.
2. The executable files still works after it is used as a
cover for embedding data.
3. The executable file is undetectable by the Norton
antivirus software after the hiding operation.
4. The sizes of cover files used in tests are 532,480 -
81,208,728 Byte, the size of the information hiding using
text (10,001 Byte - 90,888 Byte), Image (15,383 –888,431
Byte), audio (20,332 - 2,281,008 Byte) and video (25,333

- 3,998,913 Byte). From the test, it was found that the
hiding method makes it possible for the cover and the
message to be independent. In the event that the size of
the cover exe.Files is upgraded, the security also
increases. Also when the information hidden inside the
cover is less than the cover file size, the information
hiding is even more secure.

Conclusion

In this paper, a new approach for high secure and rate
data hidden within triplex space for non multimedia file
steganography has been presented. The basis of this
method is the use of an executable file as a cover file that
hides the information. The new approach’s successes are
based on the hiding, encryption, extraction, and
decryption functions which do not negatively affect the

functionality of the EXE file. This framework overcomes
the limitation of the steganographic approach by the
usage of the largest cover file size from among the non
multimedia files which is the EXE. By using the EXE file,
we have the flexibility of making a computation that
involves steganography and cryptography which makes it
possible to achieve a higher security level for the system
or using the triplex space for the EXE file to hide huge
amounts of data. To mitigate security issues, the authors
have chosen the AES Algorithm method to guarantee the
protection of data even if the attacker somehow gets hold
of the data. Hence one of important conclusions is that
since most antivirus systems do not allow direct writing
into executable files, the approach for the proposed
system is able to prevent the hidden information from
being observed by these systems and at the same time,
the cover file can also be executed normally after the
hiding operation. In other words, the cover file still
behaves naturally, that is, working normally and is not
affected in any way.

ACKNOWLEDGMENTS

We wish to thank all the researchers who contributed to
this project. Also we would like to acknowledge and
thanks the researchers in MMU for their unlimited support
and this project was funded by the University of Malay,
IPPP, Project No: P009/2008A.

REFERENCES

Ahmed A, Mohamed M, Kiah ML, Zaidan AA, Zaidan BB (2010). A

Novel Embedding Method to Increase Capacity of LSB Audio
Steganography Using Noise Gate Software Logic Algorithm ’, Journal
of Applied Sciences, Vol.10, Issue 1, ISSN: 1812-5654, pp. 59-64.

Anckaert BB, De Sutter D, Chanet and. De Bosschere K (2005).
‘Steganography for executable and code transformation signatures ‘.
Proceedings of the 7th Information Security and Cryptology May 24,
Springer Berlin, Heidelberg, pp. 425-439. http://www.springerlink.com
/content/vbxjdapj9g 25 agel.

Artz D (2001). Digital steganography for hiding data within data, Internet
Computing, IEEE, 5(3): 75-80. URL:http://ieeexplore.ieee.org/xpl/
freeabs_all.jsp?&arnumber=935180.

Bassia PP I, Nikolaidis N (2001). ‘Robust audio watermarking in the
time domain’, Multimedia, IEEE Transactions on, 3(2): 232 -241.
URL:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=923822

Zaidan et al. 1977

Bender WDGN, Morimoto AL (1996). Techniques for data hiding, IBM

Systems J., 35(3-4): 313-336.
URL:http://portal.acm.org/citation.cfm?id=243522&dl=GUIDE&coll=G
UIDE&CFID=56553217&CFTOKEN=80925059.

Cvejic NST (2002). ‘Increasing the capacity of LSB-based audio
steganography’, Multimedia Signal Processing, IEEE Worksho, pp.
336-
338URL:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=120
3314.

Cvejic NST (2004). ‘Reduced distortion bit-modification for LSB audio
steganography’. Proc. Signal Processing. Proceedings. ICSP '04.
2004 7th International Conference2004 pp. 2318- 2321,
URL:http://www.mediateam.oulu.fi/publications/pdf/550.pdf.

Cvejic NST (2005). Increasing Robustness of LSB Audio
Steganography by Reduced Distortion LSB Coding’, journal of
universal computer science, 11(1): 56- 65, URL:ftp.math.utah.edu/
pub//tex/bib/cryptography2000.ps.gz

El-Khalil R, Keromytis AD (2004). Hiding information in program
binaries’. Proceedings of the 6th International Conference on
Information and Communications Security, Oct. 27- 29, Springer
Berlin, Heidelberg,pp:
187199.http://cat.inist.fr/?aModele=afficheN&cpsidt=16334236.

Lee YKC, Chen LH (2000). High capacity image steganographic model,
Vision, Image and Signal Processing, IEE Proceedings, 147(3): 288-
294. URL:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? Arnumber
=852312.

Muhammad IAS, Zaidan MA, Zaidan AA, Zaidan BB (2009). Student
record retrieval system using knowledge sharing. Int. J. Comput. Sci.
Network Secur. 9: 97-106. .http://paper.ijcsns.org/07_book/
200906/20090614. Pdf

Naji AW, Zaidan AA, Zaidan BB, Shihab A, Khalifa OO (2009). Novel
approach of hidden data in the unused area 2 within exe files using
computation between cryptography and steganography. Int. J.
Comput. Sci. Network Secur. 9: 294-300. http://paper.ijcsns.org/
07_book/200905/20090539. Pdf.

Noto M (2001). MP3Stego: Hiding Text in MP3 Files, SANS
Institute,URL:http://www.sans.org/reading_room/whitepapers/stengan
ography/mp3stego_hiding_text_in_mp3_files_550?show=550.php&c
at=stenganograph.

Ross JA (1998). On the Limits of Steganography, IEEE Journal of
Selected Areas in Communications, 16(4): 474-481. URL:http://
www.petitcolas.net/fabien/publications/jsac98-limsteg.pdf.

Yeh CH, Kuo CJ (1999). Digital watermarking through quasi m-arrays ,
Signal Processing Systems. SiPS 99. IEEE Workshop oni, pp. 456-
461. URL:http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? Arnumber
=822351.

Zaidan AA, Zaidan BB, Abdulrazzaq MM, Raji RZ, Mohammed SM
(2009). Implementation stage for high securing cover-file of hidden
data using computation between cryptography and steganography.
Int. Assoc. Comput. Sci. Inform. Technol., 20, Session 6: 482-489.

http://WWW.IACSIT.ORG and Www.WordAcademicPress.com.

