Strong commutativity preserving additive maps on rank k triangular matrices

Chooi, Wai Leong and Tan, Li Yin and Tan, Yean Nee (2024) Strong commutativity preserving additive maps on rank k triangular matrices. Linear & Multilinear Algebra, 72 (1). pp. 1-24. ISSN 1563-5139, DOI https://doi.org/10.1080/03081087.2022.2146042.

Full text not available from this repository.
Official URL: https://doi.org/10.1080/03081087.2022.2146042

Abstract

Let n >= 2 be an integer and let T-n(D) be the ring of nxn upper triangular matrices over a division ring D with centre Z(T-n(D)). In this paper, we characterize additive maps psi:T-n(D)-> T-n(D) satisfying psi(A),psi(B)]-A,B]is an element of Z(T-n(D)) for all A,B is an element of T-n(D). We then deduce from this result a complete characterization of strong commutativity preserving additive maps psi:T-n(D)-> T-n(D) on rank k upper triangular matrices, where 1 <= k <= n is a fixed integer such that k&NOTEQUexpressionL;n when |D|=2.

Item Type: Article
Funders: Ministry of Education, Malaysia [Grant No: FRGS/1/2022/STG06/UM/02/7]
Uncontrolled Keywords: Strong commutativity preserving map; upper triangular matrix; division ring; functional identity; linear preserver problem
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science > Institute of Mathematical Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 09 Jul 2024 03:53
Last Modified: 10 Jul 2024 07:42
URI: http://eprints.um.edu.my/id/eprint/44336

Actions (login required)

View Item View Item