Effect of different deposition techniques of PCDTBT:PC71BM composite on the performance of capacitive-type humidity sensors

Bakar, Nor Asmaliza Abu and Ali, Salman and Hisamuddin, Syaza Nafisah and Supangat, Azzuliani and Langford, Steven J. and Roslan, Nur Adilah (2022) Effect of different deposition techniques of PCDTBT:PC71BM composite on the performance of capacitive-type humidity sensors. Synthetic Metals, 285. ISSN 0379-6779, DOI https://doi.org/10.1016/j.synthmet.2022.117020.

Full text not available from this repository.

Abstract

The performance and hence pragmatic use of organic humidity sensors requires various factors to be addressed outside of progress in high-performance organic-based sensing materials. While important, evaluation of fabrication techniques also requires attention to optimise performance. Herein we report the effect of different application techniques on the humidity sensing performance of polyN-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10 ,30-benzothiadiazole)] (PCDTBT) and 6,6]-phenyl-C-71-butyric acid methyl ester (PC71BM) organic composites. Spin-coating, immersion and drop-casting techniques have been applied to prepare sensors. Field-emission scanning electronic microscopy (FESEM) analysis of the prepared films revealed different types of self-assembled nanorods and nanotubes to be formed. The morphological and self-assembled differences could be attributed to various crystallisation processes as a result of different deposition techniques. Capacitive responses of all three sensors have been studied as a function of relative humidity at room temperature. PCDTBT:PC71BM composites prepared through the immersion technique showed superior sensing performance including higher sensitivity (62.34 pF/%RH) than sensors prepared through the spin coating (0.2 pF/%RH) and drop-casting (7.5 pF/%RH) techniques. The superior sensing performance of the sensor prepared through the immersion technique can be ascribed to both the nanotube and porous morphology exhibited.

Item Type: Article
Funders: Ministry of Education, Malaysia [Grant No: FP078-2018A]
Uncontrolled Keywords: PCDTBT:PC71BM; Composite nanostructures; Humidity sensor; Deposition technique; Capacitance
Subjects: Q Science > QC Physics
Divisions: Faculty of Science > Department of Physics
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 08 Sep 2023 08:38
Last Modified: 08 Sep 2023 08:38
URI: http://eprints.um.edu.my/id/eprint/43055

Actions (login required)

View Item View Item