Understanding and predicting the usage of shared electric scooter services on university campuses

Moosavi, Seyed Mohammad Hossein and Ma, Zhenliang and Armaghani, Danial Jahed and Aghaabbasi, Mahdi and Ganggayah, Mogana Darshini and Yuen, Choon Wah and Ulrikh, Dmitrii Vladimirovich (2022) Understanding and predicting the usage of shared electric scooter services on university campuses. Applied Sciences-Basel, 12 (18). ISSN 2076-3417, DOI https://doi.org/10.3390/app12189392.

Full text not available from this repository.

Abstract

Electric vehicles (EVs) have been progressing rapidly in urban transport systems given their potential in reducing emissions and energy consumptions. The Shared Free-Floating Electric Scooter (SFFES) is an emerging EV publicized to address the first-/last-mile problem in travel. It also offers alternatives for short-distance journeys using cars or ride-hailing services. However, very few SFFES studies have been carried out in developing countries and for university populations. Currently, many universities are facing an increased number of short-distance private car travels on campus. The study is designed to explore the attitudes and perceptions of students and staff towards SFFES usage on campus and the corresponding influencing factors. Three machine learning models were used to predict SFFES usage. Eleven important factors for using SFFESs on campus were identified via the supervised and unsupervised feature selection techniques, with the top three factors being daily travel mode, road features (e.g., green spaces) and age. The random forest model showed the highest accuracy in predicting the usage frequency of SFFESs (93.5%) using the selected 11 variables. A simulation-based optimization analysis was further conducted to discover the characterization of SFFES users, barriers/benefits of using SFFESs and safety concerns.

Item Type: Article
Funders: UNSPECIFIED
Uncontrolled Keywords: Green campus; Shared free-floating electric scooter; Usage frequency prediction; Decision tree; Random forest
Subjects: G Geography. Anthropology. Recreation > GE Environmental Sciences
T Technology > TK Electrical engineering. Electronics Nuclear engineering
T Technology > TP Chemical technology
Divisions: Faculty of Engineering
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 19 Sep 2023 01:59
Last Modified: 19 Sep 2023 01:59
URI: http://eprints.um.edu.my/id/eprint/41320

Actions (login required)

View Item View Item