Biomimetic targeted theranostic nanoparticles for breast cancer treatment

Marshall, Suphalak Khamruang and Angsantikul, Pavimol and Pang, Zhiqing and Nasongkla, Norased and Hussen, Rusnah Syahila Duali and Thamphiwatana, Soracha D. (2022) Biomimetic targeted theranostic nanoparticles for breast cancer treatment. Molecules, 27 (19). ISSN 1420-3049, DOI https://doi.org/10.3390/molecules27196473.

Full text not available from this repository.

Abstract

The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time. Herein, human red blood cell (RBC) membrane-cloaked nanoparticles with enhanced targeting functionality were designed as a targeted nanotheranostic against cancer. Naturally, derived human RBC membrane modified with targeting ligands coated onto polymeric nanoparticle cores containing both chemotherapy and imaging agent. Using epithelial cell adhesion molecule (EpCAM)-positive MCF-7 breast cancer cells as a disease model, the nature-inspired targeted theranostic human red blood cell membrane-coated polymeric nanoparticles (TT-RBC-NPs) platform was capable of not only specifically binding to targeted cancer cells, effectively delivering doxorubicin (DOX), but also visualizing the targeted cancer cells. The TT-RBC-NPs achieved an extended-release profile, with the majority of the drug release occurring within 5 days. The TT-RBC-NPs enabled enhanced cytotoxic efficacy against EpCAM positive MCF-7 breast cancer over the non-targeted NPs. Additionally, fluorescence images of the targeted cancer cells incubated with the TT-RBC-NPs visually indicated the increased cellular uptake of TT-RBC-NPs inside the breast cancer cells. Taken together, this TT-RBC-NP platform sets the foundation for the next-generation stealth theranostic platforms for systemic cargo delivery for treatment and diagnostic of cancer.

Item Type: Article
Funders: Thailand Research Fund (TRF) (MRG6280179), CSTS, MOST, Faculty of Medicine, Prince of Songkla University, Thailand
Uncontrolled Keywords: Nanomedicine; Biomimetic; Nanoparticles; Theranostics; Cancer
Subjects: Q Science > QD Chemistry
Q Science > QH Natural history > QH301 Biology
R Medicine
Divisions: Faculty of Science > Department of Chemistry
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 17 Aug 2023 06:21
Last Modified: 17 Aug 2023 06:21
URI: http://eprints.um.edu.my/id/eprint/41069

Actions (login required)

View Item View Item