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Abstract
Background: Nipah virus (NiV), a recently discovered zoonotic virus infects and replicates in
several human cell types. Its replication in human neuronal cells, however, is less efficient in
comparison to other fully susceptible cells. In the present study, the SK-N-MC human neuronal cell
protein response to NiV infection is examined using proteomic approaches.

Results: Method for separation of the NiV-infected human neuronal cell proteins using two-
dimensional polyacrylamide gel electrophoresis (2D-PAGE) was established. At least 800 protein
spots were resolved of which seven were unique, six were significantly up-regulated and eight were
significantly down-regulated. Six of these altered proteins were identified using mass spectrometry
(MS) and confirmed using MS/MS. The heterogenous nuclear ribonucleoprotein (hnRNP) F, guanine
nucleotide binding protein (G protein), voltage-dependent anion channel 2 (VDAC2) and
cytochrome bc1 were present in abundance in the NiV-infected SK-N-MC cells in contrast to
hnRNPs H and H2 that were significantly down-regulated.

Conclusion: Several human neuronal cell proteins that are differentially expressed following NiV
infection are identified. The proteins are associated with various cellular functions and their
abundance reflects their significance in the cytopathologic responses to the infection and the
regulation of NiV replication. The potential importance of the ratio of hnRNP F, and hnRNPs H
and H2 in regulation of NiV replication, the association of the mitochondrial protein with the
cytopathologic responses to the infection and induction of apoptosis are highlighted.

Background
Nipah virus (NiV) is a recently discovered zoonotic nega-
tive-stranded RNA virus of the genus Henipavirus of the
Paramyxoviridae family [1,2]. The virus causes severe to
fatal central nervous system (CNS) infection in humans
[3,4]. The virus is acquired from contact with the excre-
tions or secretion of NiV-infected pigs [5-7] and it has a
mortality rate of ~40% in human infection. NiV-infected
patients typically present with symptoms of CNS infection

with elevated cerebrospinal fluid protein and white cell
counts [6]. Severe vasculitis and small lesions with pres-
ence of NiV antigen and nucleocapsid inclusion bodies
are also detectable in the brain using immunohistochem-
ical staining [8,9], but no mature viral particles are
observed [10,11]. NiV productively infects several differ-
ent human cell types and cells of other host origin [12]. In
contrast to infections of the fully susceptible human lung
fibroblast and pig kidney cells, NiV replicates less effi-
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ciently in human neuronal cells. It does not result in
immediate cell lysis and releases low number of infectious
virus particles. There is evidence to suggest that the infec-
tion spreads insidiously through the cell-to-cell spread
infection mechanisms and therefore, there is no rapid dis-
semination of the virus. This is consistent with the
observed absence of mature viral particles in the infected
human brains [8,11]. The cytopatologic effects of NiV
infection on the neuronal cells and how virus replication
is regulated in these cells are still unknown. In the present
study, we used two-dimensional polyacrylamide gel elec-
trophoresis (2D-PAGE) and mass spectrometry (MS) to
examine the human neuronal cell protein responses to
NiV infection.

Results
Comparison of 2D-PAGE protein profiles of NiV-infected 
SK-N-MC cells
The NiV-infected and mock-infected human neuronal
cells (SK-N-MC) 2D-PAGE protein profiles were estab-
lished using four sets of immobilized pH-gradient (IPG)
strips: broad (pH 3–10, 7 cm and 18 cm) and narrow
range strips (pH 4–7, 18 cm and pH 6–11, 18 cm). At least
397 and 403 protein spots were detected in the silver-
stained 2D-PAGE gels of the NiV-infected and mock-
infected SK-N-MC cells, respectively (Figures 1a and 1b)
using the short IPG strips (7 cm) and the small polyacry-
lamide gel electrophoresis (PAGE) format (7 cm) to sepa-
rate the protein extracts. Protein spots between the
molecular mass of approximately 97 kDa to 43 kDa, how-
ever, were poorly resolved. Improved protein spot separa-
tion was achieved using the longer IPG strips (18 cm) and
larger PAGE format (18 cm) with more than 1000 protein
spots detected using the broad range IPG strip, pH 3–10
(Figures 2a and 2b). However, several clusters of unre-
solved protein spots were still noted. For analytical pur-
poses, these highly saturated protein spots present
between pH 4 to 8 were resolved using the narrower range
IPG strips, pH 4–7 and pH 6–11 (Figures 2c, d, e and 2f).

A total of 804 protein spots each were visualized in the
NiV-infected and mock-infected SK-N-MC cells protein
profiles, respectively, using the pH 4–7 large format gels
(Figures 2c and 2d). In the pH 6–11 large format gels of
the NiV-infected and mock-infected SK-N-MC cells pro-
tein profiles, at least 372 and 370 protein spots were
detected, respectively (Figures 2e and 2f). A standard ref-
erence gel image for each pH range was then constructed
from the 2D-PAGE of the mock-infected SK-N-MC cell
proteins. Gel image analysis was performed by comparing
the occurrence of every spot among the two sets of protein
profiles (NiV-infected and mock-infected SK-N-MC cell
proteins, each consisting of three gels) against the respec-
tive standard gel of the same pH range. Following the
detection analysis, unique protein spots, protein spots

Two-dimensional gel electrophoresis of mock-infected and NiV-infected SK-N-MC cellsFigure 1
Two-dimensional gel electrophoresis of mock-
infected and NiV-infected SK-N-MC cells. Mock-
infected and NiV-infected cell proteins were extracted 
directly using urea buffer. IEF was performed in 7 cm IPG 
strips, pH 3–10 using 100 µg of mock-infected (a) and NiV-
infected (b) SK-N-MC cell proteins.

Enhancement of protein spot separation of mock-infected and NiV-infected SK-N-MC cells for two-dimensional gel electrophoresis analysisFigure 2
Enhancement of protein spot separation of mock-
infected and NiV-infected SK-N-MC cells for two-
dimensional gel electrophoresis analysis. Improved 
protein resolution for mock-infected and NiV-infected cell 
proteins was achieved using the 18 cm IPG strips of pH 3–10 
(a, b), pH 4–7 (c, d) and pH 6–11 (e, f), respectively.
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present only in NiV-infected or mock-infected SK-N-MC
cell protein profiles, were detected. At least three protein
spots were found to be unique in the pH 4–7 gels of the
NiV-infected SK-N-MC cell samples and two in the mock-
infected samples (Figure 3a). In the pH 6–11 gels, two
unique protein spots were detected in the NiV-infected
SK-N-MC cell protein profile (Figure 3b). Several differen-
tially expressed protein spots were detected in the pH 4–7
protein profiles of the NiV-infected and mock-infected
SK-N-MC cells. At least two protein spots were over-abun-
dant (up-regulated) in the infected SK-N-MC cell protein
profile (Figure 3a) and seven protein spots were markedly
under represented (down-regulated). In the pH 6–11 pro-
tein profiles of the NiV-infected SK-N-MC cells, four pro-
tein spots were up-regulated and one was down-regulated
(Figure 3b).

Identification of proteins by MALDI-TOF MS
The 21 protein spots identified to be either unique or dif-
ferentially expressed were excised from the 2D-PAGE and
subjected to MALDI-TOF MS analysis. Highly interpreta-
ble MS spectra with strong MALDI signals was obtained
for seven protein spots from the NiV-infected and mock-
infected cell protein profiles but only six protein spots
were successfully identified with high confident matches
using the peptide mass finger printing (PMF) database
search (Table 1). Sequence coverage of at least 23% and
probability score of 72 were obtained for each of these
protein spots. At least seven peptides were found to accu-
rately match the respective proteins in the PMF identifica-
tion. Ubiquinol-cytochrome-c reductase complex core
protein 1 (cytochrome bc1) (Figure 4, SSP no. 3609), het-
erogeneous nuclear ribonucleoprotein (hnRNP) F (Figure
4, SSP no. 3617), voltage-dependent anion channel 2
(VDAC2) (Figure 4, SSP no. 7818) and the guanine nucle-
otide binding protein (G protein) (Figure 4, SSP no.
7821) were found in abundance in the NiV-infected SK-N-
MC cell protein profiles. Conversely, hnRNP H (Figure 4,
SSP no. 4422) and hnRNP H2 (Figure 4, SSP no. 2120)
were among the protein spots identified to be markedly
down-regulated in the NiV-infected SK-N-MC cell protein
profiles. The proteins identified, the hnRNPs F, H and H2
are cellular proteins that could be associated with virus
replication or RNA synthesis. The other two proteins,
VDAC2 and cytochrome bc1, are proteins associated with
the mitochondria, whereas, the G protein is known to be
involved in the cell signaling pathways. The identity of
three of the six proteins, cytochrome bc1, hnRNP F and
VDAC2 was further confirmed using MS/MS analysis
(Table 2). The identity of the remaining protein spots
could not be determined from the MS analysis due to low
abundance of the protein in the 2D-PAGE gels.

Composite gel images of the 2D-PAGE protein pattern pro-files of SK-N-MC cells before and after NiV infectionFigure 3
Composite gel images of the 2D-PAGE protein pat-
tern profiles of SK-N-MC cells before and after NiV 
infection. Mock-infected and NiV-infected SK-N-MC cell 
proteins on 18 cm IPG strips of pH 4–7 (a) and pH 6–11 (b) 
were analyzed using The Discovery Series PDQUEST 2-D 
analysis software version 7.2.0 (Bio-Rad Laboratories, USA). 
Protein spots unique to NiV-infected cells are circled in blue 
and protein spots absent in the NiV-infected cells are in red. 
The differentially expressed proteins are circled in green and 
yellow, indicating spots that are either over abundant (up-
regulated) or under represented (down-regulated), respec-
tively. The protein spots were labeled with their unique iden-
tification numbers.
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Detection of apoptosis in NiV-infected SK-N-MC cells
The abundant presence of the mitochondrial-associated
proteins along with the ultrastructural changes to the
mitochondria in the NiV-infected neuronal cells raised the
possibility of induction of apoptosis. Using terminal
deoxynucleotidyl transferase (TdT)-mediated dUTP nick-

end labeling (TUNEL) system, apoptotic NiV-infected SK-
N-MC cells were detected in the infected cell cultures
beginning at 24 hours post-infection (PI) (Figure 5). The
number of apoptotic cells steadily increased thereafter
and by 96 hours PI, almost the entire cell monolayer
became apoptotic. The intensity of the fluorescing cells
also increased as the infection progressed. The presence of
NiV antigens in these cells was demonstrated using
immunofluorescence staining with monoclonal antibody
specific against NiV.

Discussion
NiV infection causes significant cellular morphological
changes in the CNS of humans [8]. Infected cells are usu-
ally enlarged and giant multinucleated syncytial cells are
common [8,12]. NiV infects cells through ephrin-B2, a
common cell surface molecule found especially in neuro-
nal cells [13]. NiV virions are released by budding from
the infected cells [11] and high number of extracellular
virions is obtained towards the terminal end of the infec-
tion [12,14]. The rate of progression of the cytopathologic
effects of NV infection in human neuronal cells, as well as
the intracellular and extracellular virus RNA synthesis are
relatively low in comparison to the fully susceptible
human fibroblast cells or pig kidney cells [12]. Addition-
ally, the production and peak level of NiV release from the
neuronal cells are also lower as compared to the other two
NiV-infected cell cultures. These suggest that for reasons
that are still unknown, NiV replicates less efficiently in
neuronal cells despite having high ephrin-B2 on its sur-
face to facilitate NiV entry. One possible mechanism is
through specific cellular factors present in the different
cell types.

In the present study, we examine the human neuronal cell
protein responses to NiV infection and compare it to that
of the mock-treated cells. The focus on neuronal cells is to
help in understanding the reasons why NiV is not as effi-
ciently replicated in this cell, whilst the infection is per-
haps that caused the severe to fatal infection in humans.
Total protein comparison is made using cellular proteins
separated by the 2D-PAGE. The 2D-PAGE protein profile
enabled direct comparison of the differentially expressed
proteins between infected and non-infected samples.
Moreover, using bioinformatics application, the differ-
ences in protein profile can be pin-pointed and the level
of significance in expression can be quantitatively esti-
mated. The method for separation of the NiV-infected and
mock-infected SK-N-MC human neuronal cell proteins,
and the 2D-PAGE protein profiles are described for the
first time here. The number of proteins resolved by the
2D-PAGE across the different pI ranges is consistently
reproducible and representative of the total number of
proteins resolvable using the 2D-PAGE. At least 800 pro-
tein spots were used for the comparative analysis and each

Differential expression profiles of selected SK-N-MC cell proteins before and after NiV infectionFigure 4
Differential expression profiles of selected SK-N-MC 
cell proteins before and after NiV infection. The repre-
sentative protein spots showed their increased or decreased 
in expression (arrow) in the mock-infected and NiV-infected 
SK-N-MC cells. The differential expression levels of the pro-
tein spots upon NiV infection are noted from their relative 
ratios of protein spot intensity.
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consensus gel is built from at least triplicate gels. Though
sufficient number of proteins are resolved by the 2D-
PAGE, there are possibly many other cellular proteins that
are missed as these proteins are either inherently difficult
to resolve such as the highly basic proteins and some
membrane bound proteins, or they are present in very low
abundance that is beyond the detection limit of the silver
staining used in the 2D-PAGE. In spite of these limita-
tions, invaluable information is still possible from the
analysis of the abundantly expressed proteins in the
standardized 2D-PAGE gels from the NiV-infected SK-N-
MC cells.

The six significant differentially expressed proteins confi-
dently identified using MS and MS/MS are important cel-
lular proteins associated with various cell functions. The
hnRNPs in particular are involved in the regulation of

RNA synthesis of both cells and virus RNAs, and influence
mRNA processing, trafficking, and stability [15,16]. The
hnRNPs H and H2 found suppressed in NiV-infected cells
bind to a guanine-rich sequence in pre-mRNAs, down-
stream of the polyadenine [poly(A)] addition site, and
activate or influence the efficiency of pre-mRNA process-
ing [17]. The binding of H and H2 is affected by hnRNP F,
found in abundance in NiV-infected SK-N-MC cells. The
hnRNP F binds to the same sequence region as the
hnRNPs H and H2 but it blocks the binding of the cleav-
age stimulatory factor 74 kDa subunit that results in the
inhibition of the cleavage-polyadenylation reaction
[18,19]. The abundance of hnRNP F perhaps results in
inhibition of polyadenylation of NiV mRNAs in neuronal
cells infection [20,21] and this may have affected the effi-
ciency of NiV replication resulting in the low number of
NiV released from infection of the human neuronal cells

Table 1: Differentially expressed SK-N-MC human neuronal cell proteins following NiV infection identified from MALDI-TOF MS 
analysis.

SSP no. Accession no. Protein Description Mass in kDa 
(experiment/
predicted)

pI 
(experiment/
predicted)

Sequence 
coverage (%)

Number of 
peptides 
matched

Mowse score Error (ppm)

pH 4–7
2120 6065880 Heterogeneous nuclear 

ribonucleoprotein H2
38.43/49.52 3.96/5.89 46 15 171 14

3609 515634 Ubiquinol-cytochrome-
c reductase complex 
core protein I, 
mitochondrial 
precursor

54.55/52.75 5.30/5.94 46 15 170 17

3617 4826760 Heterogeneous nuclear 
ribonucleoprotein F

57.18/45.87 5.25/5.38 31 8 88 9

4422 57093855 Similar to 
heterogeneous nuclear 
ribonucleoprotein H 
(hnRNP H)

38.53/46.38 4.46/6.61 43 12 131 6

pH 6–11
7818 8574295 Voltage-dependent 

anion channel 2
20.00/31.65 9.43/7.49 41 8 88 18

7821 21619296 Guanine nucleotide 
binding protein (G 
protein), beta 
polypeptide 2-like 1

20.00/34.95 9.40/8.37 23 7 72 9

Table 2: Differentially expressed SK-N-MC human neuronal cell proteins following NiV infection identified from MALDI-TOF MS/MS 
analysis

SSP no. Accession no. Protein Description Peptide sequence matched Number of fragment 
ions matched

Ion score Error (ppm)

3609 515634 Ubiquinol-cytochrome-c 
reductase complex core protein I, 
mitochondrial precursor

R.NALVSHLDGTTPVCEDIGR.S 12 56 413

3617 4826760 Heterogeneous nuclear 
ribonucleoprotein F

K.ATENDIYNFFSPLNPVR.V 24 66 89

7818 8574295 Voltage-dependent anion channel 
2

K.VNNSSLIGVGYTQTLRPGVK.L 32 12 2587
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[12]. As the expression levels of hnRNP F and hnRNPs H
and H2 is differentially regulated in pairs [18,22], the
findings from the present study could reflect the impor-
tance of the hnRNP F/hnRNP H and H2 ratio in the regu-
lation of neuronal cell responses to NiV infection and
replication. We also found that the G protein and the

mitochondria associated proteins, VDAC2 and cyto-
chrome bc1 are significantly increased in the NiV-infected
human neuronal cells. The specific roles of these proteins
in NiV infection are presently unknown. The G protein,
however, is usually peripherally associated with the
plasma membrane and plays important role in the signal
transduction mechanism. One possible association
between the increase in G protein and NiV infection is
perhaps related to binding of NiV to ephrin-B2, a protein
highly expressed in the neurons [13] that acts as receptor
for NiV [23,24] and activation of the G protein signaling
pathways [25]. It is possible that increased expression of
the G protein is to compensate for the lost of the G protein
function following binding of NiV to ephrin-B2. Alterna-
tively, the abundance of this protein in NiV infection
could be important in controlling the infection, perhaps
by modulating cellular responses to the infection through
the Src-kinase and mitogen-activated protein kinase medi-
ated pathways [26,27]. The mitochondrial proteins
VDAC2 and cytochrome bc1 found in abundance in NiV-
infected human neuronal cells, on the other hand, are two
proteins that could be associated with the induction of
apoptosis and cellular pathologic response to the infec-
tion. Increase in VDAC2, a mitochondrial porin family
[28] may contribute to the increase in the permeability
and subsequently, causes the swelling of the mitochon-
drial matrix observed previously in NiV infected cells [12].
This can lead to the rupture of the mitochondrial outer
membrane and release of the mitochondrial proapoptotic
factors [29]. These factors then induce apoptosis to the
neuronal cell cultures seen in the present study. Increased
abundance of cytochrome bc1, a component of the ubiq-
uinol-cytochrome c reductase complex (cytochrome bc1
complex) in NiV infection, on the other hand, is perhaps
to help sustain the cytochrome bc1 complex/mitochon-
drial-associated activities as a consequent to the dysfunc-
tion of the mitochondrial respiratory chain or electron
transport, or in providing extra energy required to support
enhanced protein synthesis, particularly the proteins for
virus replication and virus production [30]. While these
are all possible, further investigation is required as the
cytochrome bc1 complex is also associated with other cell
functions including signal transduction and cytokine
induction of intercellular adhesion molecule 1 (ICAM-1)
expression [31,32].

Conclusion
Our findings in this study identify the human neuronal
cell proteins that are differentially expressed following
NiV infection. This represents the first study using pro-
teomic technologies that determine and identify cellular
protein modifications in the course of NiV infection. The
proteins identified are associated with various cellular
functions and their abundance reflects the potential sig-
nificance in the cytopathologic responses to the infection

Detection of apoptosis in NiV-infected SK-N-MC cellsFigure 5
Detection of apoptosis in NiV-infected SK-N-MC 
cells. Mock-infected and NiV-infected SK-N-MC cells were 
stained with TUNEL and counterstained with the 13A5 NiV 
monoclonal antibody. The cells were observed under a UV-
equipped microscope (63X) at 24 hr, 48 h, 72 h, 96 hr and 
120 hr PI. Apoptotic and the NiV-infected positive cells 
stained fluorescent green and red, respectively.
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and the regulation of NiV replication. Whether these pro-
teins differentiate human neuronal cells against the cellu-
lar responses of other highly susceptible cells to NiV
infection remain to be investigated. Thus, future studies
shall focus on the specific roles of each protein, in partic-
ular the role of hnRNPs and their relevance in the devel-
opment of antiviral strategies against NiV and other
henipaviruses.

Methods
Cells and virus
SK-N-MC cells obtained from ATCC (USA) were main-
tained in Eagle's minimum essential medium (EMEM
from Flowlab, Australia) supplemented with 10% fetal
calf serum (FCS, BioWhittaker, Belgium), 2 mM of
glutamine, 0.1 mM of non-essential amino acids, 1 mM of
sodium pyruvate, penicillin (100 U/mL) and streptomy-
cin (100 µg/mL) at 37°C in 5% CO2. Pig NiV isolate, NV/
MY/99/VRI-2794 maintained as previously described [14]
was used. This NiV isolate is 99.9% identical to the
reported human NiV isolates that is most likely to have
been transmitted to humans through direct contact with
infected pigs [7]. Throughout the study, adherent SK-N-
MC cells were infected with NiV to give an estimated mul-
tiplicity of infection (MOI) of 0.2 per cell. Cells treated
with mock-infection fluid were prepared in parallel to be
used as mock-infection controls. All the treatments were
done minimally in triplicates and all research activities
that involve the handling of infectious virus were per-
formed in a biosafety laboratory level 3 (BSL-3) facility at
the Veterinary Research Institute, Perak, Malaysia.

Protein sample preparation
NiV-infected and mock-infected cells were harvested for
proteins at 72 hours PI. Cells were sedimented by centrif-
ugation at 1,000 × g for 10 minutes and the pellet was
lysed in lysis buffer [40 mM Tris, 4% 3-[(3-cholamidopro-
pyl)-dimethylammonio]-1-propanesulfonate (CHAPS),
0.2% bio-lyte 3/10, 8 M urea, 2 mM tributylphos-
phine(TBP)]. The suspension was then sonicated for 15
minutes using a Branson Sonifier 250 (Branson Ultra-
sonic, USA) and endonuclease was added to a final con-
centration of 0.2 unit/µL. After the incubation, the
respective cell lysate was pooled and centrifuged at 40,000
× g for one hour and the protein supernatant was col-
lected. Protein concentration was determined using the
Micro BCA™ Protein Assay System (Pierce Biotechnology,
USA).

2D-PAGE
Protein samples (100 µg) was diluted in rehydrating
buffer containing 8 M urea, 2% 3- [(3-cholamidopropyl)-
dimethylammonio]-2-hydroxy-1-propanesulfonate
(CHAPSO), 30 mM dithiothreitol (DTT), 0.5% IPG buffer
of pH 3–10 and 0.0007% bromophenol blue and applied

to 7 cm IPG strips of pH 3–10. A total of ~300 µg of pro-
tein samples were used for the 18 cm, pH 3-10 IPG strips
and ~600 µg of protein samples were used for the pH 4–7
and 6–11 strips. The IPG strips were rehydrated with the
protein sample mixture at 50 V for 12 hours at 20°C on
the Ettan IPGphor IEF System (GE Healthcare, USA). The
proteins were then separated by isoelectric focusing (IEF)
using the following parameters with current limit of 50
µA/strip: 200 V for 200 V/hour, 500 V for 500 V/hour and
1,000 V for 1,000 V/hour at gradient mode, and 4,000 V
for 16,000 V/hour at step and hold mode. Triplicates of
the rehydrated 18 cm IPG strips were separated using sim-
ilar parameters with the exception of the final step that
included separation at 8,000 V for 32,000 V/hour for pH
3–10 and 8,000 V for 36,000 V/hour for pH 4–7 and 6–
11. After IEF, the strips were subjected to two-step equili-
bration in equilibration buffers containing 6 M urea, 375
mM Tris-HCl, pH 8.8, 2% sodium dodecyl sulfate (SDS)
and 25% glycerol with 65 mM DTT for the first step, and
260 mM iodoacetamide for the second step. The IPG
strips were then electrophoresed on 12% SDS- PAGE gel
at a constant current for 15 mA for 1 hour, 17.5 mA for 1
hour and finally 20 mA for 5 hours per gel. The analytical
and preparative gels were stained with silver stain [33] or
colloidal Coomassie Brilliant Blue [34], respectively. Dig-
ital images of the analytical gels were acquired and ana-
lyzed quantitatively for differentially expressed proteins
using The Discovery Series PDQUEST 2-D analysis soft-
ware version 7.2.0 (Bio-Rad Laboratories, USA). The level
of significance of the differences was calculated using the
Student's t-test at 95% significance level.

Mass spectrometric analysis
Protein spots from the triplicate gels were excised from the
2D-PAGE gels using the Ettan™ Spot Picker (GE Health-
care, USA) and transferred to the Ettan™ Spot Handling
Workstation (GE Healthcare, USA) for handling of pro-
tein gel plugs. The gel plugs were destained in 50% meth-
anol containing 50 mM ammonium bicarbonate. The gel
plugs were then digested with trypsin for two hours at
37°C at a final concentration of 0.02 µg/µL of trypsin
(Sequencing Grade Modified Trypsin, Promega, USA) in
20 mM ammonium bicarbonate. Peptides were extracted
from the gel plugs three times using 0.1% trifluoroacetic
acid (TFA) and 50% acetonitrile (ACN). The solvent was
then evaporated at 37°C and the dried peptides were
reconstituted in 0.5% TFA and 50% ACN. The peptides
were spotted onto MALDI-TOF sample slides together
with the saturated α-cyano-4-hydroxy cinnamic acid
matrix (LaserBio Labs, France) prepared in 0.5% TFA and
50% ACN. Tryptic peptide mass spectra were then
obtained using the Voyager-DE™ STR MALDI-TOF work-
station MS (Applied Biosystems, USA). PMF search was
performed using several available web search engines:
MASCOT [35], ProFound [36] and MS-Fit [37]. Searches
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were performed mainly against databases for Mammalia,
Homo sapiens or limited to Viruses with the following
parameters: carboxymethylation of cysteine, oxidation of
methionine, one missed cleavage, peptide mass tolerance
at 50 ppm and monoisotopic masses. Confidence in a
given match was based on: (1) the percentage of matching
peptide coverage versus the size of the matched protein;
(2) the number of matched peptides versus the number of
searched peptides; (3) the probability-based MOWSE
Score obtained for the matched protein and (4) the error
associated with the matched peptides for each sequence
[38]. Subsequently, MS/MS analysis was performed using
the two most abundant ions obtained in the PMF mass
spectra. MS/MS ion search was performed using the MAS-
COT MS/MS data search [35]. Searches were performed
against databases and search parameters as mentioned
above with the additional parameter of MS/MS mass tol-
erance at 0.4 Da.

Detection of apoptotic cells
NiV-infected cell cultures were stained for apoptosis using
the TUNEL system (Promega, USA) following strictly to
the manufacturer's protocol. Following TUNEL staining,
the infected cells were also stained for NiV antigen using
the 13A5 NiV monoclonal antibody [39], followed by
TRITC-conjugated goat anti mouse IgG. All the stained
samples were viewed under a UV-equipped microscope
(Axiolab; Zeiss, Germany) and images were captured
using a Digital SLR Camera (Nikon D70, Nikon, Japan).
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