Ion transport and electrochemical properties of proton conducting SPE for EDLC with constant specific capacitance and energy density

Brza, Mohamad A. and Aziz, Shujahadeen B. and Abdulwahid, Rebar T. and Tahir, Hawzhin B. and Kadir, Mohd Fakhrul Zamani (2023) Ion transport and electrochemical properties of proton conducting SPE for EDLC with constant specific capacitance and energy density. Journal of Industrial and Engineering Chemistry, 120. pp. 495-503. ISSN 1226-086X, DOI https://doi.org/10.1016/j.jiec.2023.01.001.

Full text not available from this repository.

Abstract

Chitosan (CH): poly(2-oxazoline) (POZ): ammonium thiocyanate (NH4SCN): glycerol electrolytes with developed conductivity are organized using solution casting technique. The loading of 50 wt. % glycerol maximized the conductivity to 1.58 x 10-3 S/cm. The simulations of electrochemical impedance spec-troscopy (EIS) data with the electrical equivalent circuit (EEC) method are used to determine fundamen-tal ion transport parameters. The diffusion coefficient (D) of 4.67 x 10-7 cm2 s-1, mobility (l) of 1.82 x 10- 5 cm2 V-1 s, and carrier density (n) of 5.42 x 1020 cm -3 are measured successfully for the highest ion con-ducting system. Dielectric properties such as dielectric constant, dielectric loss and electric modulus are studied as a function of frequency. Conductivity and dielectric analysis are found to follow the same trend. There are observable peaks in both e''and tand spectra. Various electrochemical tests are measured for the highest ion conducting sample. Transference numbers of ion (tion) and electron (te) for the CSPZNHSN5 are measured to be 0.8 and 0.2, respectively, which show that ions are the majority charge carriers. The electrochemical stability of the CSPZNHSN5 which is measured by linear sweep voltamme-try (LSV) was found to be 2.2 V. The electric double layer capacitor (EDLC) internal resistance is between 68 X and 82 X. Using the GCD measurement, the capacitance, energy, and power density of the EDLC are 100F/g, 14.5 Wh/kg, and 1500 W/kg.(c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.

Item Type: Article
Funders: Ministry of Higher Education and Scientific Research -Kurdish National Research Council (KNRC), Kurdistan Regional Government/Iraq; University of Sulaimani, Cihan University Sulaimaniya; University of Malaya
Uncontrolled Keywords: Plasticized polymer electrolyte; EIS and ions transport parameters; LSV and TNM analyses; EDLC device
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Science > Department of Physics
Depositing User: Ms Zaharah Ramly
Date Deposited: 14 Jun 2024 08:23
Last Modified: 14 Jun 2024 08:23
URI: http://eprints.um.edu.my/id/eprint/38267

Actions (login required)

View Item View Item