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Abstract 

Alzheimer’s Disease (AD) is the most common type of dementia clinically recognised by 

cognitive function impairment. Lately, the blood-based biomarkers relating to AD are 

intensively investigated due to the minimum invasiveness and relatively low cost in the 

collection of blood samples compared to the cerebrospinal fluid in the brain. With regard 

to that,  the study of the deregulation of microRNA (miRNA) levels in the blood of AD 

patients is on the rise too. In this study, data analysis was performed on the miRNA 

expression profiling dataset using an integrative bioinformatics approach. kNN 

imputation and quantile normalization were carried out as the data pre-processing step to 

remove outliers and reduce bias in the dataset. Differential expression analysis was 

performed to identify 10 significant dysregulated miRNAs using a cut-off at adjusted-p-

value <0.05 and an absolute fold change of 1.6. Subsequently, 16 pathways were 

determined to be involved by the selected 10 miRNA signatures, and 7 genes were 

predicted as the common target genes, which are Cdc42, VEGFA, NTRK3, ESR1, 

SH3GL2, COX-2 and E2F1. The roles of these target genes in AD were proven by 

literature studies. Expansion of the current work on a bigger scale of data analysis is 

needed to further validate and understand the mechanism of miRNAs in AD development.  
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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease that is clinically recognised by 

the impairment of cognition (Dementia, 2007; Mucke, 2009). It is the most common type 

of dementia, a general term used to describe unusual changes in the brain.  The prevalence 

of AD is often related to ageing, with a higher risk for senior individuals. The 

advancement in health care and medical technology has brought an increase in life 

expectancy worldwide resulting in the expansion of an ageing population globally. 

According to World Alzheimer Report 2015, it is estimated that 74.7 million and 131.5 

million people will be living with dementia in the years 2030 and 2050 (Prince et al., 

2015). It is reported that three persons will develop dementia every three seconds.  

MicroRNAs (miRNAs) play a post-transcriptional role in the regulation of gene 

expression. Significant miRNAs are able to distinguish between AD and healthy controls, 

giving the potential to support AD diagnosis (Keller et al., 2016). However, the collection 

of cerebrospinal fluid is an invasive treatment with potential side effects. The blood gene 

expression data are useful in predicting the AD classification and are shown to be 

consistent with the observations from brain tissue-based studies (Lee & Lee, 2020). 

Several studies have relate miRNA to the pathogenesis of neurodegenerative 

disease and reported that the miRNAs are essential for neuronal function and survival 

(Delay et al., 2012). For example, miR-9 is one of the most frequently altered miRNAs, 

which is downregulated in AD brains. Circulating miRNAs are among the most 

promising candidates for easily accessible and non-invasive biomarkers for AD diagnosis 

(Sturmberg et al., 2015). Over the years, it was found that miR-101, miR-20a, and miR-

17 play important roles in AD pathogenesis (Kumar & Reddy, 2016; Liu et al., 2022). On 

the other hand, the level of miR-107 was found to be correlated with AD (Fransquet & 

Ryan, 2018; Kumar & Reddy, 2016; Liu et al., 2022; Takousis et al., 2019). Besides, the 

suppression of miR-203 was found to subsequently alleviating the cognitive function (Liu 

et al., 2022).  

Technologies such as qRT-PCR, microarray and next generation sequencing are 

applied in the miRNA expression profiling (Roden et al., 2005). Differential expression 

analysis is performed on the expression profiles to study the differences of expression 

levels of miRNAs in the specific condition (Soneson & Delorenzi, 2013). The differential 

expression analysis can be done by statistical analysis or machine learning approaches. 



Pathway analysis is then carried out to analyse and identify the relationship between the 

groups of gene as well as the biological role of the candidate gene. 

In general, this study involves the data pre-processing, differential expression analysis 

and pathway analysis on the miRNA expression profiles. The raw read counts of miRNA 

expression were processed by kNN imputation and normalised using quantile 

normalization method. The differential expression analysis was performed using Welch’s 

t-test, in order to identify the differentially expressed miRNAs based on statistical and 

fold change cut-offs. Next, pathway analysis was performed in this study using KEGG 

and GO analysis. By comparing two different resources on the pathway analysis, the 

common significant pathways and target genes which are related to AD were identified. 

The identified target genes may serve as potential biomarkers which could be beneficial 

in therapeutic approaches in AD.  

 

Methods and Materials 

Figure 1 illustrates the workflow proposed in this study. miRNA dataset was collected 

and followed by data pre-processing such as imputation and normalization. Next, 

differential expression analysis was performed to identify the differentially expressed 

miRNAs which were used in the pathway analysis. Finally, significant pathways and 

target genes which are related to AD were identified. 

 



 

Figure 1: Proposed workflow 

Dataset 

The dataset used in the analysis was obtained from National Center for Biotechnology 

Information Gene Expression Omnibus (NCBI GEO) which is an open-source database 

repository that stores the array- and sequence-based gene expression data. The dataset 

used is with the reference series number GSE46579. The platform used to sequence the 

samples is GPL11154 Illumina HiSeq 2000. The dataset consists of 48 AD samples and 

22 healthy controls, with 140 unique mature microRNAs. It was collected from blood 

samples by Next-Generation Sequencing (NGS). 

Software and tools 

All the pre-processing steps and differential expression analysis were conducted using 

Python programming language. Several Python libraries were used for the data pre-

processing such as Pandas and Scikit-learn. AnnData and diffxpy libraries were used to 



carry out the differential expression analysis. GENECODIS (https://genecodis.genyo.es/) 

was used in the pathway analysis as it searches for annotations that frequently co-occur 

in a set of genes from different sources such as KEGG pathways and Gene Ontology 

terms, and rank them by statistical significance (Carmona-Saez et al., 2007). 

Data Pre-processing 

The identifier for each miRNA is based on the database miRbase (Leidinger et al., 

2013) in the raw miRNA dataset. The identifiers in that database are in the form of hsa-

mir-121, while the first three letters represent the organism. If there are distinct precursor 

sequences and genomic loci that express identical mature sequences, those miRNAs will 

get the names in the form of hsa-mir-121-1 and hsa-mir-121-2. The mature miRNA is 

signified by miR-121 while mir-121 refers to the miRNA gene and the predicted stem-

loop portion of the primary transcript. However, let-7 and lin-4 are exceptions to the 

naming scheme, which are retained for historical reasons (Griffiths-Jones et al., 2006). 

The dataset was first filtered out the microRNAs without following the naming scheme, 

such as brain-mir-192. Then, pre-processing of data was carried out. 

First, k-nearest neighbour (kNN) was used to impute the missing values in the dataset, 

with k=5. It estimates k nearest group of miRNAs that are similar to the missing target 

miRNA, then average those miRNAs to impute the missing value of the target gene. Next, 

in the normalization step, quantile normalization method was applied to the dataset. 

Quantile normalization was initially developed for gene expression microarrays but 

nowadays it can be applied in various data types including RNA-Sequencing (Cloonan et 

al., 2008; Garmire et al., 2012). Quantile normalization is a global transformation method 

by assuming the statistical distribution for each sample is the same. It takes the average 

distribution which is obtained from the mean of each quantile across samples as the 

reference, and forces the observed distributions to be identical. 

 

Differential Expression Analysis 

Before the differential expression analysis is conducted, the normalised data were 

inputted as an annotated data matrix by using the AnnData library as required for 

differential expression analysis. The data was annotated into two groups, which are AD 

and controls. In this study, the diffxpy library was used to conduct the differential 

expression analysis. Various statistical tests are provided from the library and Welch’s t-

test was used in the study. 



Welch’s t-test is used when the variances of the two groups are not identical (Yaari et 

al., 2013). To model the difference in mean expression for miRNA i between two groups, 

treatments (T) and controls (C), we define: 

 
𝑡! =

𝐸$!" − 𝐸$!#

&(𝑠!
")$
𝑁" + (𝑠!

#)$
𝑁#

 
(1) 

where 𝐸$ is the mean expression value of the miRNA, s is the standard deviation for the 

respective group on the miRNA, N is the total number of the samples that belong to the 

particular group. 

Fold-change (FC) is an essential threshold that is used to identify the differentially 

expressed miRNAs. In this study, the differentially expressed miRNAs are selected by 

using the cut-offs of adjusted-p value < 0.05 and absolute arbitrary FC > 1.6, which is 

equivalent to log2FC > 0.678. 

Pathway Analysis 

GENECODIS was used for the pathway analysis. Two types of pathway annotations 

are selected, which are KEGG pathways and Gene Ontology Biological Process (GOBP). 

Those pathways that have an adjusted-p value of less than 0.05 from the hypergeometric 

test is considerably significant. From the filtered significant pathways, the pathways from 

KEGG and GO were compared to determine the common significant pathways. Lastly, 

the significant target genes can be identified from the common significant pathways. 

 

Results 

The differentially expressed miRNAs were selected as shown in Table 1 by using the cut-

offs of adjusted-p value < 0.05 and absolute arbitrary FC > 1.6 (which is equivalent to 

log2FC > 0.678). A total of 11 differentially expressed miRNAs were selected. 

 

 

 



Table 1: Significant miRNAs identified from the Welch's t-test with cut-offs of adjusted-

p value < 0.05 and absolute FC > 1.6 (or log2FC > 0.678) 

Precursor Mature 

Sequence 

pval qval log2FC 

hsa-mir-378e hsa-miR-378e 0.002631 0.028485 -0.82127 

hsa-mir-4781 hsa-miR-4781-3p 2.67E-07 6.02E-05 -0.88574 

hsa-mir-5001 hsa-miR-5001-3p 7.69E-05 0.005796 -0.74152 

hsa-mir-378b hsa-miR-378b 0.000679 0.013395 -0.91671 

hsa-mir-330 hsa-miR-330-3p 0.002401 0.02838 -0.68803 

hsa-mir-3127 hsa-miR-3127-3p 6.23E-06 0.000939 -0.98285 

hsa-mir-5701-1* hsa-miR-5701 0.00354 0.034788 -0.68454 

hsa-mir-5701-2* hsa-miR-5701 0.00354 0.034788 -0.68454 

hsa-mir-4659a hsa-miR-4659a-3p 0.001111 0.018591 -0.71012 

hsa-mir-26b hsa-miR-26b-3p 2.11E-05 0.002385 -0.70693 

hsa-mir-1468 hsa-miR-1468 3.88E-08 1.75E-05 -0.9363 

Notes: pval – p-value; qval – adjusted-p value 
* hsa-miR-5701-1 and hsa-miR-5701-2 are different precursors that produce the same 
mature miRNA sequence. 

 

From the 11 identified differentially miRNAs, there are two identical mature miRNA 

sequences, hsa-miR-5701-1 and hsa-miR-5701-2, which are produced from different 

precursor. Therefore, only 10 unique miRNA mature sequence were used for the pathway 

analysis.  

The identifiers of the 10 unique miRNAs were used as the input to the GENECODIS. 

The functional enrichment analysis was performed based on the KEGG pathways and GO 

BP. The significant pathways were identified by an adjusted-p value < 0.05 from the 

hypergeometric test. Figure 2 and Figure 3 show the top 10 significant pathways for 

KEGG and GO BP generated from GENECODIS respectively. 



 

Figure 2: Top ten significant pathways for KEGG from GENECODIS 

 

Figure 3: Top ten significant pathways for GOBP from GENECODIS 

Two result files, each from KEGG and GOBP were downloaded in .tsv format and 

converted to .xls format. There are 78 significant pathways found in KEGG and 369 



significant biological processes are identified in GOBP. Each significant pathway from 

KEGG as well as from GOBP were filtered by masking the cancer-related terms and 

excluding those without any supported findings that suggested it is related to AD. After 

the filtration step, there are 46 pathways and 162 pathways left for KEGG and GOBP 

respectively.  

Next, the filtered pathways from KEGG and GOBP were compared to determine the 

common significant pathways. There are 16 common significant pathways identified 

from both KEGG and GOBP, which are AGE-RAGE signaling pathway, VEGF signaling 

pathway, neurotrophin signaling pathway, estrogen signaling pathway, endocytosis, focal 

adhension, MAPK signaling pathway, oxidative phosphorylation, adherens junction, glial 

cell proliferation, Fc gamma R-mediated phagocytosis, axon guidance, cell cycle, cellular 

senescence, cytokine production involved in inflammatory response and HIF-1 signaling 

pathway. 

Next, the target genes for each pathway were identified from the common significant 

pathways that were determined earlier. A total of 11 target genes (9 target genes from 

KEGG and 9 target genes from GOBP) were identified from the sixteen common 

significant pathways listed above. The results of target genes identified are listed in Table 

2. From these 11 target genes, 7 common target genes were identified as shown in the 

Venn diagram (Figure 4). 



Table 2: Target genes of pathways from KEGG and GOBP 

Terms Target Genes 

KEGG GOBP 

AGE-RAGE signaling pathway CDC42, VEGFA CDC42, VEGFA, NTRK3 

VEGF signaling pathway CDC42, VEGFA CDC42, VEGFA 

Neurotrophin signaling 
pathway 

CDC42, NTRK3 NTRK3 

Estrogen signaling pathway SP1, ESR1 ESR1 

Endocytosis CDC42, SH3GL2 CDC42, SH3GL2 

Focal adhension CDC42, VEGFA VEGFA 

MAPK signaling pathway CDC42, VEGFA CDC42, VEGFA, NTRK3 

Oxidative phosphorylation COX2 COX2 

Adherens junction CDC42 CDC42 

Glial cell proliferation E2F1 E2F1 

Fc gamma R-mediated 
phagocytosis 

CDC42 CDC42 

Axon guidance CDC42 VEGFA 

Cell cycle E2F1 E2F1 

Cellular senescence E2F1 PDCD4 

Cytokine production involved 
in inflammatory response 

EGR2 PDCD4 

HIF-1 signaling pathway VEGFA VEGFA, NKX3-1, E2F1 

 



 

Figure 4: Venn diagram of target genes between KEGG and GOBP 

Discussion 

In this study, 10 differentially expressed miRNAs were identified from differential 

expression analysis. The significance of the 10 miRNAs identified are related to their functions 

in AD or other types of neurogenerative diseases. Table 3 lists the 10 identified miRNAs in 

with related functions.  

Table 3: Significance of selected 10 miRNAs 

miRNAs Functions References 

hsa-miR-378e Downregulated in ALS; its overexpression 
inhibits the glycolysis and promotes cell 
apoptosis which indicates its therapeutic 
effect in glioma.  

Kovanda et al., 2018; 

Ding et al., 2019 

hsa-miR-4781-3p Upregulated in AD Sproviero et al., 2021 

hsa-miR-5001-3p Upregulated in AD Kumar & Reddy, 2016 

hsa-miR-378b Downregulated known miRNA in 
cerebrospinal fluid-derived exosomes 

Hou et al., 2019 

hsa-miR-330-3p Exert protective effects on Aβ production, 
oxidative stress and mitochondrial 
dysfunction by targeting VAV1 via the 
MAPK signaling pathway 

Zhou et al., 2018 

hsa-miR-3127-3p Upregulated in AD Leidinger et al., 2013 

hsa-miR-5701 Induces mitochondrial dysfunction, defect in 
autophagy flux in PD 

Prajapati et al., 2018 



hsa-miR-4659a-3p Negatively regulate GNAQ, TMTC2 and 
BEND2 with multiple miRNAs in PD 

Liu et al., 2019 

hsa-miR-26b-3p Deregulated early in AD brain, nearly 20 
years before the onset of clinical symptoms 
(upregulated in brain while downregulated 
in blood) 

Swarbrick et al., 2019 

hsa-miR-1468 Upregulated in AD Satoh et al., 2015 

 

7 common target genes were identified from the results shown in Figure 4. The common 

target genes are Cdc42, VEGFA, NTRK3, ESR1, SH3GL2, COX2 and E2F1. Table 4 lists the 

functions related to AD for each of the target genes. 

Table 4: Functions related AD in target genes 

 Genes Functions related to AD 

Cdc42 • Regulation of actin cytoskeleton dynamics and spine formation 
• Increased level Cdc42 in frontal cortex of AD 

VEGFA • Co-accumulated with beta-amyloid deposits in AD brains 
• Up- and down-regulated in brain, blood CSF of AD 

NTRK3 • Activate neuronal survival pathways 
• Decreased NTRK3 expression found in AD, PD, Huntington’s disease 

ESR1 • Decrease tau hyperphosphorylation 
• High ESR1 expression in nucleus basalis of Meynert in AD 

SH3GL2 • Increased endophilin A1 -> Increased JNK activation -> Neurons die 

COX-2 • Regulate neurotoxicity 
• Increased COX-2 in AD brain 

E2F1 • Increased immunoreactivity of E2F1 and ppRb in affected cortical 
brain  region in AD 

 
 
Conclusion 

In this study, the miRNA expression profiles of Alzheimer’s disease patients and healthy 

controls were analysed by an integrative bioinformatics data analysis approach. A total of 10 

differentially expressed miRNAs were identified (hsa-miR-378e, hsa-miR-4781-3p, hsa-miR-

5001-3p, hsa-miR-378b, hsa-miR-330-3p, hsa-miR-3127-3p, hsa-miR-5701, hsa-miR-4659a-

3p, hsa-miR-26b-3p, hsa-miR-1468). Sixteen common significant pathways were identified 



from the pathway analysis and their functions which related to AD and other neurogenerative 

diseases were discussed. Next, 7 common target genes were identified from the common 

significant pathways, including Cdc42, VEGFA, NTRK3, ESR1, SH3GL2, COX-2 and E2F1. 

All of them are shown to be involved in AD pathways which could be the potential biomarkers 

that would be beneficial towards therapeutic approaches in AD.  
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