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Introduction

The investigation of low-energy heavy-ion
induced fusion reactions is important to study
various aspects of nuclear and astrophysics
ranging from the extension of the Periodic Ta-
ble to the energy generation in stellar envi-
ronments. The evaluation of nuclear potential
formed due to the interaction of two colliding
heavy ions is vital to understand the complex
fusion dynamics. One of the well-known mod-
els to obtain the nucleus-nucleus interaction
potential is the double folding approach which
gives the nuclear potential in terms of an effec-
tive nucleon-nucleon (NN) interaction and nu-
clear densities [1, 2]. The Paris and Reid M3Y
(Michigan 3 Yukawa) interactions have been
widely adopted in the double folding model to
determine the effective NN potential. Various
density-dependent versions of these Paris and
Reid M3Y interactions have also been devel-
oped to account for the higher-order exchange
effects which also result in a better description
of infinite nuclear matter characteristics [1].

The R3Y effective NN potential has also
been developed within the relativistic mean-
field (RMF) approach [2] recently, which is
comparable to the density-independent M3Y
interaction. The present study aims to in-
troduce the density-dependence in the R3Y
NN potential within the Relativistic-Hartree-
Bogoliubov (RHB) approach [3] and to apply
this density-dependent R3Y (DDR3Y) poten-
tial to obtain the fusion cross-section for the
illustrative case of the 16O+208Pb reaction.
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Theoretical Formalism

The details of theoretical formalism for ob-
taining the nuclear potential and cross-section
using the RMF densities and R3Y as well
as M3Y NN potentials can be found in Ref.
[2]. The density-dependent R3Y NN potential
(V R3Y

eff (r, ρ)) in terms of density-dependent
nucleon-meson couplings is obtained within
the Relativistic-Hartree-Bogoliubov approach
for the DDME1 parameter set [3] and can be
written as,
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Here, all the symbols retain their usual mean-
ings. For further details see Ref. [2]. The den-
sity (ρ) entering in Eq. (1) is obtained within
the relaxed density approximation (RDA) [2]
at the mid-point of the inter-nucleon separa-
tion. In DDM3Y interactions, the ρ is gen-
erally obtained within the simple frozen den-
sity approximation (FDA) [1]. More details of
FDA and RDA and their applicability in ob-
taining the DDM3Y and DDR3Y can be found
in [2]. The results of DDR3Y NN potential ob-
tained for the well-known DDME1 parameter
set are also compared with the R3Y NN poten-
tial obtained for the non-linear NL3∗ parame-
ter set as well as with the non-relativistic Reid
M3Y and BDM3Y1 version of the DDM3Y
NN potentials [1].

Results and Discussion

The application of newly developed DDR3Y
effective NN interaction in probing the fu-
sion mechanism of 16O+208Pb reaction is dis-
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FIG. 1: The total potential VT (MeV) at ℓ = 0~
for 16O+208Pb reaction calculated using the M3Y
(blue lines), DDM3Y (orange lines), R3Y (solid
black line) and DDR3Y (dashed black line) NN
potentials.

cussed in this section. Fig. 1 shows the
barrier region of the s-wave (ℓ = 0~) in-
teraction potential calculated using different
nuclear potentials. Here, DDR3Y-DDME1
(dashed black line) signifies the nuclear po-
tential obtained folding the nuclear densities
and DDR3Y NN potential in terms of density-
dependent nuclear-meson couplings for the
DDME1 parameter set. Similarly, R3Y-NL3∗

signifies (solid black line) the nuclear poten-
tial obtained using the densities and relativis-
tic R3Y NN potential for the non-linear NL3∗

parameter set. The DDME1 (dashed lines)
and NL3∗ (solid lines) densities are also folded
with the non-relativistic M3Y (blue lines) and
DDM3Y (orange lines) NN potentials. It can
be observed from Fig. 1 that the inclusion
density-dependence in the R3Y NN potential
within the RHB approach raises the fusion
barrier with respect to the R3Y NN poten-
tial obtained for the non-linear NL3∗ param-
eter set. The DDM3Y Reid NN potential is
also observed to give a higher fusion barrier
as compared to the density-independent M3Y
NN potential. Moreover, the DDME1 densi-
ties folded with M3Y and DDM3Y NN poten-
tials give a lower barrier than the NL3∗ den-
sities, whereas this trend gets inverted when
folded with the R3Y and DDR3Y NN poten-
tials.

The fusion cross-section σ (mb) obtained
for all the six nuclear potentials under con-
sideration is plotted in Fig. 2 as a function
of center of mass energies Ec.m. (MeV). The
theoretical results for the 16O+208Pb reaction
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FIG. 2: The cross-section σ (mb) for the
16O+208Pb reaction calculated using the M3Y
(blue lines), DDM3Y (orange lines), R3Y (solid
black line) and DDR3Y (dashed black line) NN
potentials.

are also compared with the experimental data
[4]. A decrease in the cross-section is observed
on moving from the R3Y NN potentials for
the NL3∗ model to the DDR3Y NN poten-
tial given in terms of the density-dependent
nuclear-meson couplings for the DDME1 set.
Although the DDR3Y NN potential provides
a better fit to the experimental data as com-
pared to the M3Y and DDM3Y NN poten-
tials, it underestimates the experimental data
at below-barrier energies. However, the nu-
clear densities and R3Y NN potentials for the
non-linear NL3∗ parameter set give a satis-
factory match with the experimental data. A
more comprehensive analysis involving more
reaction systems from different mass regions
is under process.
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