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Introduction

The fusion reactions of heavy nuclei have
been thoroughly studied to comprehend the
quantum tunnelling phenomenon in intricate
many-body systems. One interesting phe-
nomenon observed in this field is the sub-
barrier fusion enhancement. A significant en-
hancement in the sub-barrier heavy ion fu-
sion cross sections over the one-dimensional
barrier penetration model (1-D BPM) predic-
tions have been observed experimentally [1].
The measured fusion excitation functions have
been attributable to the coupling between rel-
ative motion in the entrance channel with in-
trinsic degrees of freedom of the participating
nuclei and nucleon transfer channels. Within
the context of coupled channels (CC) calcula-
tions, the effect of nuclear vibration and de-
formation has been established [1, 2]. How-
ever, in most cases, the involvement of neu-
tron transfer has appeared to be ambiguous.
Further, various nuclear potentials have been
proposed in the literature to explain the fusion
cross-section over wide energy ranges. The
nuclear component of nucleus-nucleus interac-
tions can be approximated using the Woods-
Saxon potential. The other well-known one is
the double folding nuclear potential in which
the ion-ion optical potential is obtained by av-
eraging an effective nucleon-nucleon (NN) in-
teraction over the matter densities of the two
colliding nuclei [3]. Over recent decades, the
widely used NN interactions are M3Y inter-
actions. Recently, the Relativistic mean field
formalism has been used to generate the ef-
fective NN interaction known as R3Y poten-
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tial which is analogous to the M3Y potential
[4] and references therein. Therefore, in the
present work, the CC calculations have been
performed using WS and R3Y NN interaction
potential with neutron transfer channels for
1BO+182W reaction.

Theoretical Formalism

The Coupled Channel approach (CCFULL)
is employed mainly for calculating mean an-
gular momenta and the fusion cross-sections
of the compound nucleus under the influence
of coupling between relative motion and in-
trinsic degrees of freedom of the interacting
nuclei. More details can be found in Ref. [2].
The crucial and sensitive ingredient of the cou-
pled channel approach is the nucleus-nucleus
interaction potential, which is taken from the
Wood-Saxon approach.
It is worth mentioning that microscopic R3Y
NN potential for the NL3* parameter set will
be included in this investigation and can be
determined by solving the RMF equations
for mesons. Further details can be found in
Refs.[3, 4]. The fusion cross-section of the
compound nucleus assumes the coupling of all
orders as discussed in the results.

Result and Discussions

The measured fusion cross-section for 20 +
I82\W reaction is analyzed using the coupled
channel CCFULL code. The Woods-Saxon
potential parameters Vjy, 1o, and ag are 98.76
MeV, 1.15 fm and 0.73 fm respectively to re-
produce the fusion cross-section at the above
barrier energies [5]. The f-values are obtained
from the sharp cut-off model [6]. The chan-
nel coupling does not play an important role
above the Coulomb barrier. Therefore, we
first perform the one-dimensional barrier pen-
etration model (1-D BPM) by ignoring nuclear
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FIG. 1:

(Color online) The fusion cross-sections estimated up to 2% excited state as

a function of

Ee.m.(MeV) for *#0 + "2W reactions (a) WS potential (b) R3Y NN potential.

intrinsic excitations to reproduce the experi-
mental fusion cross-sections at the above bar-
rier energies. The solid black line represents
the 1-D BPM calculations as shown in Fig.1.
In coupled channel calculations, we have in-
cluded the quadrupole deformation fo= 0.265
and hexadecapole deformation 84= -0.075 ob-
tained from the relativistic mean-field formal-
ism (RMF). The fusion cross-section obtained
with the inclusion of at 2% state of the tar-
get nuclei is represented by a solid red line as
shown in Fig.1. However, even with the inclu-
sion of excitation channel 27, fusion hindrance
at below barrier energy is still observed. We
have obtained the microscopic R3Y nucleon-
nucleon (NN) potential within the RMF ap-
proach and then fed this potential as an ex-
ternal potential to perform the coupled chan-
nel calculations. The Woods-Saxon potential
parameters are tuned to R3Y NN potential in
such a way as to obtain the same fusion cross-
section. The fitted WS parameters for R3Y
NN potential Vj, rg, and ag are 98.76 MeV,
1.193 fm, and 0.73 fm respectively. This reac-
tion has a +ve Q-value of 1.414 MeV for the
neutron stripping channel [5]. The coupling
strength of 0.3 fm has been included in the
CCFULL code. We have done the calculations
by including the 2n-transfer channel and the
inelastic excitations. The dotted red line rep-
resents the data for the 27 channel as shown

in fig.1. Our results show that within the in-
clusion of neutron transfer (Ntrans) with R3Y
NN potential, theoretical calculations match
well with the experimental data even at below
barrier energies [5]. Further investigations are
in progress.
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