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Introduction

The major objective of modern nuclear
physics is to understand the variation of struc-
tural properties of extreme neutron-proton
(n− p) asymmetric nuclear matter. With the
increased accessibility of radioactive ion-beam
(RIB) facilities around the world, it is now
experimentally possible to study the nuclear
matter properties of highly asymmetric nu-
clei with great precision and put to the test
the theoretical models. However, it is in-
creasingly difficult to perform extensive ex-
perimental measurements on a wide range of
highly unstable nuclear matter, which includes
astrophysical objects such as neutron stars.
In response to the present experimental con-
straints, modern theoretical formalism such
as the non-relativistic Hartree-Fock+BCS ap-
proach with Skyrme interaction and relativis-
tic mean-field with different parameter sets
provide successful means to study the nuclear
matter properties for a wide range of nuclei
which are in agreement with the available ex-
perimental data [1].

Measurements of nuclear matter densities
and collective excitations have aided in un-
derstanding some fundamental aspects of the
equation of state (EoS); however, the nuclear
matter properties associated with the n − p
asymmetry of the EoS are largely unexplored
as of yet. In recent years the study of isospin-
dependence of asymmetric nuclear matter and
density-dependent nuclear symmetry energy
(NSE) has become prominent on both the the-
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oretical and experimental fronts. The study of
NSE serves as the definitive link between finite
nuclei and infinite nuclear matter. In the past
decade, the non-relativistic Brückner energy
density functional energy (Brückner-EDF) has
been employed within the coherent density
fluctuation model (CDFM) to estimate the
surface properties of nuclei. However, the
Brückner’s-EDF being non-relativistic nature,
fails to accurately replicate the empirical sat-
uration point at ρ ≈ 0.2 fm−3 instead of ρ ≈
0.15 fm−3, also referred as the Coaster-Band
problem [2]. To address this issue, recently,
a fitting procedure was introduced [2] hav-
ing nuclear matter saturation plots obtained
from effective-field theory motivated relativis-
tic mean-field (E-RMF) formalism for vary-
ing n − p asymmetry with widely used NL3
and recently developed G3 parameters. The
present calculation focus on obtaining the sur-
face properties such as symmetry energy along
with its surface and volume components for
the G3 parameter set using the relativistic-
EDF and comparing the same with Brückner’s
prescription. We perform all the calculations
for spherical nuclei of Scandium (Z = 21) iso-
topic chain and study the existence of possible
shell and/or sub-shell closure.

Theoretical Formalism

Based on the newly fitted binding energy func-
tion of E-RMF can be expressed as [2]:

E(x) = Ckρ
2/3
o (x) +

14
∑

i=3

(

bi + aiα
2
)

ρi/3o (x).(1)
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Within the CDFM formalism, the symmetry
energy is calculated as [1]:

S =

∫

∞

0

dx|F(x)|2SNM (x). (2)

The term |F(x)|2 implies the weight function
obtained from the RMF density of nuclei given
as:

|F(x)|2 = −

(

1

ρ0(x)

dρ(r)

dr

)

r=x

. (3)

More details related to the calculation of sur-
face properties within CDFM is given in Refs.
[1, 2, 3].

Results and discussion

Using the spherical equivalent RMF densities
of Scandium isotopes, we calculate the weight
function |F(x)|2 within the CDFM. The plot
of density and weight function with respect
to nuclear distance is given in Fig. 1, show-
ing a bell structure with maxima near the
center. The density-dependent symmetry en-
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FIG. 1: (a) The spherical RMF density ρ
and weight function |F(x)|2 wrt. distance r,
(b) nuclear symmetry energy S wrt. neutron
number N for Sc with G3 parameter set.

ergy is estimated along with its volume and
surface parts for Relativistic-EDF as given in
Fig. 2. On careful observation, one can find
evidence of discontinuity or kink at N = 50
for both Relativistic-EDF and Brückner’s pre-
scription. The discontinuity indicates the ex-
istence of possible shell and/or sub-shell clo-
sure. It is important to note here that not

 !  " #$ ## #% &! &"

!%

 $

 !

 #

 !  " #$ ## #% &! &"

!$

!!

!#

           

  !" 

 !" #$%&

 !"#$%&'&(%&)*+,-

 ./0)12"/*+,-

 

 

!
"
#
$
%
&

 

           

  !" 

 !" #$%&

 !"#$%&'&(%&)*+,-

 ./0)12"/*+,-

 

!

!
"
#
$
%
&

 

FIG. 2: The calculated symmetry energy
components namely, (a) volume SV and (b)

surface SS , symmetry energy for the
Relativistic-EDF and Brückner-EDF is

shown with number of neutrons for Scandium
isotopes with G3 parameter set.

all kinks point to the existence of shell clo-
sure, and it may need experimental validation.
Moreover, we find minor kink at N = 40 and
46 for Relativistic-EDF but not for Brückner-
EDF. The region of N = 40 is expected to
have a possible shell or sub-shell closure based
on the experimental findings close to Calcium-
like nuclei such as Titanium [4]. More de-
tailed experimental investigation in this region
is highly welcome. The Relativistic-EDF ob-
servations are in line with the experimental
results and thus indicate its superiority over
the Brückner’s prescription.
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