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Introduction
The stability of various heavy and super-

heavy nuclei takes their primary description
from the shell structure of their respective nu-
cleus. This usually requires a good under-
standing of the quantum nature of the under-
lying nuclear structure. The α-decay, which
is an important tool to investigate the under-
lying structure and stability, earlier has been
theoretically described by quantum tunnelling
effect [1].

In the present work, we have adopted the
preformed cluster-decay model (PCM) which
is based on quantum mechanical fragmenta-
tion theory (QMFT) [2] for the estimation
of the α-decay half-lives. The PCM holds
the assumption that an α-particle is conceived
within the parent nucleus before its penetra-
tion across the potential barrier built from the
interplay of the Coulomb and nuclear poten-
tial. In this study, The relativistic mean-field
(RMF) based R3Y nucleon-nucleon potential
is folded with the RMF densities to obtain the
nuclear potential (see Ref. [3] for elaborate de-
tails). The WKB approximation is employed
for the estimation of the penetration probabil-
ity P .

In this study, the neck-length parameter,
∆R, between the decaying fragments is var-
ied within the nuclear proximity range i.e.
0 ≤ ∆R ≤ 2 fm [3]. To ensure the accu-
racy of present calculation, the α-decay en-
ergies (Qα-values) are taken from the exper-
imental measurements [4]. The overall effort
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is geared at investigating decay properties of
the newly discovered neutron-deficient 249No
isotope from the 253Rf decay chain [5].

Theoretical formalism

In the RMF framework, the interactions be-
tween the many-body system of nucleons and
mesons are expressed via the non-linear RMF
Lagrangian density [3]. The R3Y (NL3∗) NN
interaction plus the single nucleon exchange
effect is given as [3],
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with the ranges in fm and strength in MeV.
The decay constant and half-life is calculated
within the PCM [2, 3] as

λ = ν0P0P, T1/2 =
ln 2

λ
. (2)

The preformation probability P0 is calculated
from the Deng & Zhang formula [6].

Result and Discussions

In the PCM framework, a constant scaling
factor of 10−4 is generally required for the cal-
culation of half-lives [7]. However, it has been
recently demonstrated that this conjecture is
susceptible to change at the shell closure and
thus, randomness sets it [8]. Fig. 1 reveals the
variation of the PCM scaling factor for the α-
emitting 253Rf decay chain. From the figure,
it is obvious that the smooth systematic trend
is altered at 245Fm and 233Pu (indicated with
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FIG. 1: Variation in the scaling factors of
253Rf decay chain with the preformed cluster
model (PCM). The red arrows indicates suspected
shell/sub-shell closures. The inset shows a mag-
nified view of randomness/unusual increase in the
scaling factor for 233Pu daughter nuclei.
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FIG. 2: Logarithmic half-lives of systems within
the 253Rf decay chain versus the proton number of
their respective daughter nucleus. The daughter
nuclei are mentioned beneath their correspond-
ing data point. The black arrow indicates that
only the experimental lower limit is available for
237Cm →

233Pu +α. The experimental half-lives
are taken from [4].

a red upward arrow) suggesting the possibil-
ity/presence of shell and sub-shell closures re-
spectively. In other words, the 245Fm is found
to be shell stabilized. Interestingly, this re-
sult is consistent with the recent findings of
Das et al. [9]. The inset shows a magnified

view of the abrupt increase in the scaling fac-
tor at 233Pu. The effect and implication of
these randomnesses are evident in the α-decay
half-lives.

Figure 2 shows the profile of the logarith-
mic half-lives as a function of the proton num-
ber of the daughter nuclei. The lowest min-
ima are found at N = 100 corresponding to
245Fm daughter nuclei (from 249No →245Fm
+α) which is characteristic of its shell sta-
bility whereas the highest half-life values are
found at 233Pu indicating a shell/sub-shell clo-
sure. This gives credence to the aforemen-
tioned randomness in their respective scaling
factors. Other than the point of shell stabil-
ity, the log

10
T1/2 values are found to decrease

with decreasing N/Z ratio or vice versa. Gen-
erally, the half-lives calculated using RMF are
consistent with the experimental data and also
satisfy the measured lower limit for 233Pu.
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