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Abstract— Oil-insulated power equipment such as power 

transformers are one of the most imperative facilities in power 

systems. However, they are constantly subjected to electrical 

and thermal stresses, which accelerates their ageing process and 

heightens the risk of malfunction during operation due to 

incipient faults. Therefore, determination of incipient faults in 

power equipment is of utmost priority, where faults must be 

detected and diagnosed accurately in the early stages. In this 

work, determination of the incipient faults within oil-insulated 

power equipment based on dissolved gas analysis (DGA) data is 

proposed using artificial neural network (ANN)-social group 

optimization (SGO) technique. The method was compared with 

combination with other algorithms, which include particle 

swarm optimization (PSO) and artificial bee colony (ABC) 

algorithms. The results in this work demonstrate an 

improvement in the classification accuracy for the optimized 

ANN compared to the non-optimized ANN. Comparison among 

the optimized methods shows that ANN-SGO yields higher 

classification accuracy compared to ANN-PSO and ANN-ABC. 

The results obtained indicate that the proposed technique could 

benefit the power industries in determination of the fault type 

within oil-insulated power equipment automatically. 

Keywords— Dissolved gas analysis, oil-insulated power 

equipment, artificial neural network, optimization techniques, 
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I. INTRODUCTION 

In an extensively interlinked network of an electrical 
power system, hydrocarbon mineral oil is a type of liquid 
insulation that is regularly used in indispensable power 
equipment, such as circuit breaker, power transformer and 
reactor. While long service life of power equipment is sought 
after for its durability, prolonged operation term of the 
mentioned equipment tends to encourage the development of 
incipient electrical and thermal faults. Such faults, which are 
influenced by electrical, thermal, mechanical, and 
environmental stress, degrade the quality of insulation and 
safe operation state of the equipment, ultimately driving the 
generation and transmission network to failure. As a result, 
imperative improvement of state-based maintenance 
strategies through continuous power equipment health 
condition monitoring is important as it allows for prediction 
of equipment malfunctions. Subsequently, this prompts 
maintenance strategies to obviate risks induced by the faults 
such as power outages, fires and substantial propriety loss. 

To identify the fault type by analyzing dissolved gases in 
the oil, conventional DGA diagnostic tools such as Key Gas 

Method (KGM), Rogers’ Ratio Method (RRM), IEC Ratio 
Method (IRM), Doenernburg’s Ratio Method (DRM) and 
Duval’s Triangle Model (DTM) are employed [1-4]. 
However, these tools pose several limitations in yielding good 
analysis accuracy. One of them is fault evaluation for the same 
oil sample from the same oil-insulated power equipment is 
inconsistent between the analyses done. This is due to 
different personnel may interpret differently based on the 
experience the personnel has in DGA. Comparison of fault 
evaluation between these tools may yield conflicting 
diagnoses. 

 Several artificial intelligence (AI) tools have been applied 
to determine the fault type of oil-insulated power equipment 
[5-7]. However, these AI methods require suitable selection of 
their features, which is commonly done manually, so that the 
accuracy results are the best. Hence, optimization algorithms 
have been applied to improve the performance of AI [2, 8, 9]. 
However, some optimization algorithms are trapped in local 
minima and low convergence rate. Hence, improvement of the 
existing work can be performed. 

II. INPUT AND OUTPUT DATA FOR ANN 

The “IEC TC 10 Database of Faulty Equipment Inspected 
in Service” is applied as the input and output data of the study 
[10]. The ratio of gas concentration is used as the input while 
the fault type is used as the output data. In the case of 
classification of fault type in oil-insulated power equipment, 
the same database is used to train and test the artificial neural 
network (ANN) classifier. The input and output data are 
summarized in Table I. The input and output data are used to 
train and test ANN to determine the fault type. The training 
and testing data are split into 70:30 ratio. Two hidden layers 
and different number of neurons are tried out to determine a 
suitable structure of ANN before it is optimized by 
optimization algorithms. Fig. 1 shows a general structure of 
ANN used in this work [11-14]. 

TABLE I.  INPUT AND OUTPUT DATA 

Input data Output data(label) 

CH4/H2 
C2H2/C2H4 
C2H2/CH4 
C2H6/C2H2 
C2H4/C2H6 

Partial Discharge (PD) 
Discharges of Low Energy (D1) 
Discharges of High Energy (D2) 

Thermal Faults < 700°C (T1 & T2) 
Thermal Faults > 700°C (T3) 

No Fault 
 



 
Fig. 1. Structure of ANN [15] 

III. SOCIAL GROUP ALGORITHM 

To optimize the performance of ANN, two ANN 
parameters are varied automatically by social group 
optimization (SGO). The parameters are learning rate (LR) 
and momentum constant (MC). These parameters are varied 
until the fitness function value is the lowest, given by 

 Error = min {(100 – Accuracy)} (1) 

SGO is a new meta-heuristic, human behavior based 
optimization method motivated by humans collaborating with 
one another to solve complicated problems [16, 17]. 
Throughout all stages in life, humans have cultivated dormant 
behavioral traits such as fear, compassion, tolerance and more 
to navigate through endeavors. While humans naturally are 
effective problem solvers, the underlying concept is when a 
much too complex problem is assigned to a single individual, 
it may become too difficult for that individual to solve. This is 
due to the individual is limited to his or her individual 
capability of formulating a solution. However, the bright side 
of the situation lies in knowing that humans are also great 
imitators of their surrounding influences. Therefore, when 
approached with a team effort, the complexity of the problem 
is reduced and the problem can be solved more effectively. 
One can say that the aggregation of different individual 
knowledge and capacity levels leads to a more productive 
outcome than that of an individual ability. Fig. 2 shows the 
overall flowchart of ANN-SGO used in this work. 

 

IV. RESULTS AND DISCUSSION 

Table II shows the results of identification accuracy of 
each fault type in oil-insulated power equipment using 
different conventional DGA techniques. Based on the 
conventional DGA technique results, the best accuracy is 
achieved by using the IRM diagnostic tool, which has the 
highest overall accuracy of 73.50%, while the worst accuracy 
of 26.50% is achieved by using KGM. KGM achieved the 
highest accuracy in classifying Partial Discharge at 44.44%, 
Discharges of Low Energy at 76.92%, Discharges of High 
Energy at 87.50%, Thermal Faults < 700°C at 56.25% and 
Thermal Faults > 700°C at 61.11%. This observation can be 
attributed to the fact that KGM only considers four general 
types of fault and it requires that the concentration of dissolved 
key gases used to determine the fault must be high, otherwise 
unresolved diagnoses would result. 
 

 

 
Fig. 2. Overall flowchart of ANN-SGO 

TABLE II.  FAULT IDENTIFICATION ACCURACY USING EXISTING 
DIAGNOSIS METHODS 

AI 

Classifier 

DGA Diagnostic Tool Fault Identification 

Accuracy (%) 
Overall 

Accuracy 

(%) PD D1 D2 T1&T2 T3 
No 

Fault 

KGM 100.00 50.00 0.00 50.00 5.88 8.00 26.50 

DRM 44.44 0.00 85.42 62.50 83.33 14.00 59.80 

RRM 11.11 0.00 85.42 18.75 61.11 26.00 47.86 

IRM 44.44 76.92 87.50 56.25 61.11 68.00 73.50 

 
 
To determine the number of neurons per layer, different 

combinations of number of neurons for two hidden layers 
were obtained. The number of neurons for the second hidden 
layer is kept constant while the first hidden layer is varied 
from 1 to 10. It has been found that the combination of neuron 
numbers that provides the best overall accuracy is when both 
hidden layers have 10 neurons each. Tables III to VII show 
the overall accuracy of ANN for different number of neurons 
tested. 

 
 
 



TABLE III.  ANN ACCURACY WHEN NUMBER OF NEURON = 2 FOR 
HIDDEN LAYER 2 

L1 L2 

ANN Classifier Classification Accuracy (%) Overall 

Accuracy 

(%) PD D1 D2 
T1 & 

T2 
T3 

No 

Fault 

1 2 0.00 15.64 56.39 19.58 63.70 0.27 27.52 

2 2 0.00 7.18 57.64 22.08 56.67 2.93 26.84 

3 2 6.15 40.00 71.53 16.25 69.26 9.20 38.96 

4 2 20.00 31.54 83.19 14.17 74.44 16.53 44.28 

5 2 9.23 27.18 58.06 25.42 61.48 10.00 33.52 

6 2 15.38 40.77 84.17 14.17 82.59 19.20 47.44 

7 2 14.62 46.67 79.03 10.83 81.11 10.40 43.72 

8 2 20.00 59.49 73.75 21.67 71.85 24.13 48.64 

9 2 17.69 52.82 80.14 18.75 75.19 21.33 48.56 

10 2 23.85 45.64 62.36 29.17 64.07 11.20 39.40 

 

TABLE IV.  ANN ACCURACY WHEN NUMBER OF NEURON = 4 FOR 
HIDDEN LAYER 2 

L1 L2 

ANN Classifier Classification Accuracy (%) Overall 

Accuracy 

(%) PD D1 D2 
T1 & 

T2 
T3 

No 

Fault 

1 4 0.00 41.03 71.39 9.58 72.96 5.60 37.44 

2 4 4.62 44.87 66.25 11.25 67.41 4.27 35.96 

3 4 7.69 45.13 70.83 11.67 72.96 11.73 40.36 

4 4 20.00 55.13 72.78 12.92 77.78 12.93 44.12 

5 4 16.15 46.15 69.72 19.17 67.78 10.27 40.36 

6 4 23.85 55.64 77.64 18.75 75.93 19.20 48.04 

7 4 15.38 50.77 70.69 20.00 70.00 12.93 42.44 

8 4 18.46 48.21 74.58 17.08 78.15 9.87 43.00 

9 4 24.62 43.33 73.33 24.17 66.67 17.60 43.96 

10 4 17.69 48.72 71.11 24.58 75.93 15.60 44.24 

 

TABLE V.  ANN ACCURACY WHEN NUMBER OF NEURON = 6 FOR 
HIDDEN LAYER 2 

L1 L2 

ANN Classifier Classification Accuracy (%) Overall 

Accuracy 

(%) PD D1 D2 
T1 & 

T2 
T3 

No 

Fault 

1 6 1.54 38.72 65.28 15.42 60.37 9.33 35.72 

2 6 15.38 44.10 77.08 17.50 69.63 13.60 43.16 

3 6 14.62 46.41 80.28 16.25 73.70 16.93 45.72 

4 6 19.23 57.18 73.89 10.00 77.04 12.67 44.28 

5 6 25.38 61.28 76.53 20.83 69.63 20.27 48.52 

6 6 31.54 62.56 80.69 20.42 84.07 21.47 52.12 

7 6 31.54 62.31 79.58 21.67 82.59 24.93 52.76 

8 6 27.69 60.26 76.94 19.17 74.81 19.07 48.64 

9 6 21.54 57.44 67.36 25.00 74.44 16.67 44.92 

10 6 28.46 67.18 77.50 23.33 82.96 22.40 52.20 

 

TABLE VI.  ANN ACCURACY WHEN NUMBER OF NEURON = 8 FOR 
HIDDEN LAYER 2 

L1 L2 

ANN Classifier Classification Accuracy (%) Overall 

Accuracy 

(%) PD D1 D2 
T1 & 

T2 
T3 

No 

Fault 

1 8 3.08 45.13 76.39 9.17 64.44 11.20 40.40 

2 8 12.31 52.82 77.08 11.25 71.85 6.67 41.92 

3 8 10.77 56.41 76.94 15.42 74.07 9.47 43.84 

4 8 19.23 47.18 63.19 21.67 68.52 9.47 38.88 

5 8 12.31 42.82 79.03 14.17 74.07 9.33 42.24 

6 8 26.92 58.21 79.44 22.50 73.70 20.00 49.48 

7 8 26.15 55.13 77.50 17.08 78.15 19.07 48.08 

8 8 20.77 54.87 77.92 21.67 77.78 18.27 48.04 

9 8 27.69 61.03 78.61 23.33 79.63 20.40 50.56 

10 8 28.46 65.13 74.31 22.08 78.15 21.20 49.96 

 

TABLE VII.  ANN ACCURACY WHEN NUMBER OF NEURON = 10 FOR 
HIDDEN LAYER 2 

L1 L2 

ANN Classifier Classification Accuracy (%) Overall 

Accuracy 

(%) PD D1 D2 
T1 & 

T2 
T3 

No 

Fault 

1 10 6.15 38.46 61.39 18.75 64.81 3.87 33.96 

2 10 20.77 46.41 81.11 17.50 75.56 12.00 45.12 

3 10 19.23 56.41 78.33 15.83 82.22 14.00 46.96 

4 10 18.46 55.64 73.47 13.75 76.30 15.07 44.88 

5 10 20.00 56.92 75.28 23.75 78.52 19.60 48.24 

6 10 32.31 60.00 82.50 25.83 80.37 28.13 54.40 

7 10 28.46 62.31 77.92 22.08 81.11 24.80 51.96 

8 10 33.85 65.13 76.53 30.42 82.59 27.20 53.96 

9 10 36.92 68.21 83.33 30.83 81.85 31.47 57.80 

10 10 46.15 80.00 91.81 34.58 87.78 39.33 65.92 

 
 
Table VIII shows comparison of the results between using 

ANN alone, ANN-SGO, ANN-PSO and ANN-ABC. The 
average of classification accuracy and convergence iteration 
are considered so that the convergence speed and 
effectiveness of the algorithm can be evaluated among 
different algorithms. From this table, by varying two main 
parameters of ANN, the learning rate and momentum 
constant, the accuracy of ANN combined with optimization 
algorithm is higher compared to ANN alone or without 
optimization.   

 

TABLE VIII.  ANN ACCURACY USING ANN ALONE, ANN-SGO, ANN-
PSO AND ANN-ABC 

AI 

Classifier 

Accuracy 

(%) 

Improvement 

compared to 

ANN alone (%) 

Convergence 

iteration 

ANN 65.92 - - 

ANN-SGO 97.36 31.44 17 

ANN-PSO 85.92 20.00 20 

ANN-ABC 96.64 30.72 34 



From Table VIII, the highest overall classification 
accuracy is achieved by ANN-SGO with 97.36%, followed 
by ANN-ABC and ANN-PSO. The highest improvement 
compared to ANN alone is achieved by ANN-SGO. The 
fastest convergence is also achieved by ANN-SGO, which is 
also shown in Fig. 3. This is due to in SGO, there is an 
improvement phase, where each person gets knowledge from 
the group’s best person to update their knowledge. This 
improves the convergence rate and fitness value. 

 
 

 
Fig. 3. Convergence curve for ANN-optimization algorithms 

 

CONCLUSIONS 

In this work, determination of the incipient faults within 
oil-insulated power equipment based on dissolved gas 
analysis (DGA) data has been successfully proposed using 
artificial neural network (ANN)-social group optimization 
(SGO) technique. The method was compared with 
combination with other algorithms, which include particle 
swarm optimization (PSO) and artificial bee colony (ABC) 
algorithms. From the results obtained, there is a significant 
improvement in the classification accuracies for the optimized 
ANN compared to the non-optimized ANN. Comparison 
among the optimized methods shows that ANN-SGO yields 
higher classification accuracy, with 97.36%, followed by 
ANN-ABC with 96.64% and finally ANN-PSO with 85.92%. 
ANN-SGO also converges the fastest among ANN-PSO and 
ANN-ABC. The results obtained indicates that the proposed 
technique could benefit the power industries in determination 
of the fault type within oil-insulated equipment automatically. 
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