

Short Communication

Genetic data for 15 STR loci in a Kadazan-Dusun population from East Malaysia

B.P. Kee¹, L.H. Lian¹, P.C. Lee², T.X. Lai² and K.H. Chua¹

¹Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia ²Biotechnology Program, School of Science and Technology, Universiti Sabah Malaysia, Kota Kinabalu, Sabah, Malaysia

Corresponding author: L.H. Lian E-mail: lhlian@um.edu.my

Genet. Mol. Res. 10 (2): 739-743 (2011) Received September 15, 2010 Accepted November 25, 2010 Published April 26, 2011 DOI 10.4238/vol10-2gmr1064

Key words: Short tandem repeats; Population data; East Malaysia; Powerplex 16 system

©FUNPEC-RP www.funpecrp.com.br

Genetics and Molecular Research 10 (2): 739-743 (2011)

B.P. Kee et al.

INTRODUCTION

Short tandem repeats (STR) have been widely used in different aspects of modern scientific research, such as human evolution, forensics, anthropology, and disease development (Calafell et al., 1998; Blessmann et al., 2008; Divine et al., 2010; Lewis Jr., 2010). Therefore, it is important to profile the STRs for local populations, which are helpful for further genetic characterization. Sabah is the second largest State in Malaysia, and is located at the northern pole of Borneo Island (Figure 1). There are approximately 28 indigenous groups that account for 60% of the local population. Among them, the Kadazan-Dusun tribe is the largest group, which makes up 18% of the total population. Their origins are still debated until today. The settlement of Island Southeast Asia (ISEA) by modern humans was described by researchers with the "Out of Taiwan" model (Bellwood, 2007). The dispersal was believed to occur in two tiers - the first tier was marked by the arrival of "Australo-Melanesian" about 50,000 years ago. This was followed by the colonization by "Autronesians", who came by sea from Southern China through Taiwan, about 5000 years ago for agricultural purposes (Bellwood, 2007). Hence, in the present study, we examined 15 STR loci in the Kadazan-Dusun population. To the best of our knowledge, this is the first report of population data with regard to the STRs of this indigenous tribe from East Malaysia.

Figure 1. Location of the Sabah State, East Malaysia (Source: edited from Google Maps).

MATERIAL AND METHODS

One hundred and fifty-four unrelated healthy individuals from the Kadazan-Dusun tribe residing in the State of Sabah in East Malaysia were randomly sampled. Ethical approval for the project was obtained from the University of Malaya Medical Centre's Medical Ethics Committee (No. 770.21), which operates according to the ICH-GCP guidelines and the Declaration of Helsinki. Genomic DNA was extracted from peripheral blood samples via a modified conventional phenol-chloroform extraction method. The quality and quantity of the extracted DNA was assessed spectrophotometrically. The amplification process was carried out using the Promega Powerplex 16 system according to the cycling parameters recommended by the manufacturer. Amplified products were resolved by native 2% (w/v) agarose gel electrophoresis to ensure suc-

Genetics and Molecular Research 10 (2): 739-743 (2011)

cessful amplification of the desired loci. Typing was performed by capillary electrophoresis using an ABI3100 genetic analyzer. Allelic call and genotyping were carried out via the Genemapper ID software version 3.2 (ABI), by referring to the allelic ladder included in the kit.

Quality assurance of the test was conducted via laboratory internal controls and kit DNA controls. Allelic frequencies, the observed heterozygosity, power of discrimination, power of exclusion, and polymorphism information content (PIC) were calculated using PowerStats V1.2 (http://www.promega.com) (Tereba, 1999). The estimation of Hardy-Weinberg equilibrium (HWE) and expected heterozygosity was done with the exact test using the Arlequin V3.1 software (Schneider et al., 2000). The level of significance of the exact test was set at 5%.

RESULTS AND DISCUSSION

Allelic frequencies and statistical parameters of the 15 STR loci examined in this study are shown in Tables 1 and 2. All loci showed a high degree of heterozygosity (>0.7), with exception of loci D7S820 and TPOX (0.623 and 0.526, respectively). The loci were observed to have high discriminating power, as the power of discrimination of each loci varied from 0.721 (TPOX) to 0.968 (Penta E), whereas the PIC ranged from 0.464 (TPOX) to 0868 (Penta E). The combined power of discrimination for the 15 STR loci studied is 0.9999999999999999. All loci were found to show no deviation from HWE (P > 0.05). In terms of gene diversity, the Penta E locus was identified as the most polymorphic marker in the Kadazan-Dusun population, with 89.6% heterozygosity. In our study, the 15 STR loci exhibited high levels of polymorphism in the Kadazan-Dusun population. Therefore, these loci can be used effectively as genetic markers for forensic identification purposes and in various other genetics-based studies.

	/		1 1	,			/	
Allele	D5S818	D7S820	D13S317	D16S539	TH01	TPOX	Penta D	Penta E
23								0.023
22								0.010
21								0.026
20								0.007
19								0.026
18								0.065
17								0.078
16								0.049
15								0.231
14	0.003	0.010		0.010				0.068
13	0.068	0.007		0.052			0.208	0.023
12	0.172	0.136	0.247	0.114		0.003	0.127	0.084
11	0.393	0.539	0.412	0.312	0.000	0.481	0.091	0.185
10	0.338	0.123	0.081	0.260	0.088		0.133	0.026
9.3	0.026	0.020	0.026	0.252	0.046	0.065	0.202	0.022
9	0.026	0.020	0.030	0.255	0.406	0.065	0.383	0.025
8		0.100	0.224		0.100	0.451	0.055	
6					0.218		0.005	
5					0.078			0.075
4								0.073
Ho	0.714	0.623	0.721	0.760	0 792	0.526	0.766	0.896
He	0.699	0.650	0.713	0.758	0 747	0.563	0 768	0.882
PD	0.843	0.830	0.864	0.890	0.896	0.721	0.908	0.968
PIC	0.642	0.609	0.663	0.714	0.710	0.464	0.734	0.868
PE	0.451	0.320	0.461	0.527	0.585	0.211	0.538	0.787
Р	0.437	0.066	0.546	0.125	0.389	0.442	0.094	0.052

Table 1. Allelic frequencies and statistical parameters of D5S818, D7S820, D13S317, D16S539, TH01, TPOX, Penta D, and Penta E in the Kadazan-Dusun population, Sabah in East Malaysia (N = 154).

Ho = observed heterozygosity; He = expected heterozygosity; PD = power of discrimination; PIC = polymorphism information content; PE = power of exclusion; P = probability value of the exact test for HWE.

Genetics and Molecular Research 10 (2): 739-743 (2011)

B.P. Kee et al.

Table 2. Allelic frequencies and statistical parameters of D3S1358, D8S1179, D18S51, D21S11, CSF1PO, vWA, and FGA in the Kadazan-Dusun population, Sabah in East Malaysia (N = 154).											
Allele	D3S1358	D8S1179	D18S51	D21S11	CSF1PO	vWA	FGA				
34.2				0.003							
33.2				0.110							
32.2				0.140							
32				0.023							
31.2				0.084							
31				0.136							
30.2				0.013							
30				0.260							
29				0.182							
28				0.049							
27							0.007				
26							0.033				
25.2							0.003				
25							0.088				
24							0.107				
23							0.140				
22.2							0.003				
22			0.003				0.244				
21							0.169				
20						0.029	0.107				
19.2	0.010		0.055			0.004	0.003				
19	0.013		0.055			0.084	0.052				
18.2	0.001		0.010			0.000	0.046				
18	0.091	0.012	0.010			0.296					
1/	0.192	0.015	0.068			0.292					
10	0.260	0.104	0.140			0.104					
13	0.432	0.149	0.334			0.081					
14	0.015	0.224	0.292		0.020	0.107					
15		0.289	0.02		0.020						
12		0.023	0.071		0.412	0.003					
10		0.127			0.221	0.003					
0		0.003			0.030	0.005					
Ho	0.701	0.831	0.721	0.805	0.714	0.779	0.870				
He	0.703	0.814	0.721	0.842	0.686	0.793	0.859				
PD	0.857	0.932	0.913	0.951	0.829	0.928	0.958				
PIC	0.652	0.787	0.735	0.820	0.625	0.762	0.841				
PE	0.430	0.658	0.461	0.609	0.451	0.561	0.735				
P	0.584	0.217	0.780	0.163	0.709	0.250	0.339				

Ho = observed heterozygosity; He = expected heterozygosity; PD = power of discrimination; PIC = polymorphism information content; PE = power of exclusion; P = probability value of the exact test for HWE.

ACKNOWLEDGMENTS

Research supported by the Ministry of Science, Technology and Innovation, Malaysia (eScience Fund #12-02-03-2045), the Ministry of Higher Education, Malaysia (FRGS #FP024/2009), and the University of Malaya (PPP #PS234/2010A).

REFERENCES

Bellwood P (2007). Prehistory of the Indo-Malaysian Archipelago. ANU E Press, Australia.

Blessmann M, Kaifi JT, Schurr PG, Cihan A, et al. (2008). Short tandem repeat polymorphism in exon 4 of esophageal cancer related gene 2 predicts relapse of oral squamous cell carcinoma. *Oral Oncol.* 44: 143-147.

Calafell F, Shuster A, Speed WC, Kidd JR, et al. (1998). Short tandem repeat polymorphism evolution in humans. *Eur. J. Hum. Genet.* 6: 38-49.

Genetics and Molecular Research 10 (2): 739-743 (2011)

Divine AM, Edlund H and Allen M (2010). Forensic analysis of autosomal STR markers using pyrosequencing. *Forensic Sci. Int-Gen.* 4: 122-129.

Lewis CM Jr (2010). Hierarchical modeling of genome-wide short tandem repeat (STR) markers infers native American prehistory. *Am. J. Phys. Anthropol.* 141: 281-289.

Schneider S, Roessli D and Excoffier L (2000). Arlequin: A Software for Population Genetics Data Analysis. Ver. 2.000. Genetics and Biometry Laboratory, Department of Anthropology, University of Geneva, Geneva.

Tereba A (1999). Tools for Analysis of Population Statistics. Profiles in DNA 2: 14-16.