Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation

Saidin, S. and Kadir, M.R.A. and Sulaiman, E. and Abu Kasim, N.H. (2012) Effects of different implant-abutment connections on micromotion and stress distribution: prediction of microgap formation. Journal of Dentistry, 40 (6). pp. 467-474. ISSN 0300-5712,

[img]
Preview
PDF
implant_debutment.pdf

Download (31kB)
[img] PDF
Effects_of_different_implant–abutment_connections_on.pdf
Restricted to Registered users only

Download (1MB) | Request a copy

Abstract

Objectives: The aim of this study was to analyse micromotion and stress distribution at the connections of implants and four types of abutments: internal hexagonal, internal octagonal, internal conical and trilobe. Methods: A three dimensional (3D) model of the left posterior mandible was reconstructed from medical datasets. Four dental implant systems were designed and analysed independently in a virtual simulation of a first molar replacement. Material properties, contact properties, physiological loading and boundary conditions were assigned to the 3D model. Statistical analysis was performed using one-way analysis of variance (ANOVA) with a 95 confidence interval and Tukey's Honestly Significant Difference (HSD) multiple comparison test. Results: The internal hexagonal and octagonal abutments produced similar patterns of micromotion and stress distribution due to their regular polygonal design. The internal conical abutment produced the highest magnitude of micromotion, whereas the trilobe connection showed the lowest magnitude of micromotion due to its polygonal profile. Conclusions: Non-cylindrical abutments provided a stable locking mechanism that reduced micromotion, and therefore reduced the occurrence of microgaps. However, stress tends to concentrate at the vertices of abutments, which could lead to microfractures and subsequent microgap formation. (C) 2012 Elsevier Ltd. All rights reserved.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: ISI Document Delivery No.: 930HT Times Cited: 0 Cited Reference Count: 45 Cited References: Abdul Kadir MR, 2008, J BIOMECH, V41, P587 Bakke M, 2006, SEMIN ORTHOD, V12, P120, DOI 10.1053/j.sodo.2006.01.005 Bibby BG, 1938, J DENT RES, V17, P471, DOI 10.1177/00220345380170060501 Borsani E, 2005, ACTA HISTOCHEM, V107, P231, DOI 10.1016/j.acthis.2005.06.002 Cehreli M, 2004, J DENT, V32, P123, DOI 10.1016/j.jdent.2003.09.003 Cheng YY, 2010, J PROSTHET DENT, V103, P309 Clark GT, 1999, J PROSTHET DENT, V82, P704, DOI 10.1016/S0022-3913(99)70012-0 DeTolla D H, 2000, J Oral Implantol, V26, P77, DOI 10.1563/1548-1336(2000)026<0077:TROTFE>2.3.CO;2 Elias CN, 2008, JOM-US, V60, P46, DOI 10.1007/s11837-008-0031-1 Eskitascioglu G, 2004, J PROSTHET DENT, V91, P144, DOI 10.1016/j.prosdent.2003.10.018 Faegh S, 2010, J BIOMECH, V43, P1761, DOI 10.1016/j.jbiomech.2010.02.017 Faggion CM, 2011, J DENT, V39, P108, DOI 10.1016/j.jdent.2010.11.002 Faggion CM, 2010, J DENT, V38, P443, DOI 10.1016/j.jdent.2010.03.003 Giannetopoulos S, 2010, J DENT, V38, P980, DOI 10.1016/j.jdent.2010.08.011 Gomes BPFA, 1996, J DENT, V24, P47, DOI 10.1016/0300-5712(95)00042-9 Grunder Ueli, 2010, Eur J Esthet Dent, V5, P158 Hagiwara Y, 2010, JPN DENT SCI REV, V46, P122 Harder S, 2010, CLIN ORAL INVEST, V14, P427, DOI 10.1007/s00784-009-0317-x Harder S, 2009, CLIN ORAL INVEST, V14, P427 Kong L, 2009, ADV ENG SOFTW, V40, P474, DOI 10.1016/j.advengsoft.2008.08.003 Lin CL, 2005, BIOMED ENG-APP BAS C, V17, P44 Lin CL, 1999, COMPUT METH PROG BIO, V59, P187, DOI 10.1016/S0169-2607(99)00004-8 Misch CE, 2008, CONT IMPLANT DENT Muller HP, 1999, ORAL SURG ORAL MED O, V88, P248, DOI 10.1016/S1079-2104(99)70123-X Myshin HL, 2005, J PROSTHET DENT, V94, P440, DOI 10.1016/j.prosdent.2005.08.021 Niinomi M, 1998, MAT SCI ENG A-STRUCT, V243, P231, DOI 10.1016/S0921-5093(97)00806-X Park IS, 2008, MET MATER-INT, V14, P133, DOI 10.3365/met.mat.2008.04.133 Proff P., 2006, Folia Morphologica, V65, P75 Rack A, 2010, J SYNCHROTRON RADIAT, V17, P289, DOI 10.1107/S0909049510001834 Rees J. S., 1993, Clinical Materials, V14, P35, DOI 10.1016/0267-6605(93)90045-9 RHO JY, 1993, J BIOMECH, V26, P111, DOI 10.1016/0021-9290(93)90042-D Rizkalla AS, 2004, DENT MATER, V20, P198, DOI 10.1016/S0109-5641(03)00092-7 Segundo Regenio Mahfuz Herbstrith, 2009, Stomatologija, V11, P55 Segundo Regenio M H, 2007, Acta Odontol Latinoam, V20, P79 Semper W, 2009, J DENT RES, V88, P725, DOI 10.1177/0022034509341172 Shareef N, 1996, BIOMATERIALS, V17, P623, DOI 10.1016/0142-9612(96)88713-8 Souiyah Miloud, 2009, American Journal of Applied Sciences, V6, DOI 10.3844/ajassp.2009.1396.1402 Steinebrunner L, 2005, INT J ORAL MAX IMPL, V20, P875 Tesmer M, 2009, J PERIODONTOL, V80, P1991, DOI 10.1902/jop.2009.090178 Tsuge T, 2008, DENT MATER J, V27, P29 Tsuge T, 2009, DENT MATER J, V28, P373 Van Staden RC, 2008, APPL OSSEOINTEGRATIO, V6, P39 Van Staden Rudi C, 2008, Journal of Biomedical Science & Engineering, V1 Zachrisson H, 2010, EUR J RADIOL, V75, pE124, DOI 10.1016/j.ejrad.2010.02.001 Zipprich H, 2007, IMPLANTOLOGIE, V15, P31 Saidin, Syafiqah Kadir, Mohammed Rafiq Abdul Sulaiman, Eshamsul Abu Kasim, Noor Hayaty Government of Malaysia03-01-03-SF0540 This study was supported by Research Grant No. 03-01-03-SF0540 from the Government of Malaysia. An appreciation is given to Medical Implant Technology Group (MediTeg), Universiti Teknologi Malaysia and University of Malaya. Elsevier sci ltd Oxford
Uncontrolled Keywords: Micromotion Implant-abutment connection Stress distribution Finite element method 3-dimensional finite-element in-vitro bacterial-colonization dental implants elastic-moduli interface bone titanium systems alloys
Subjects: R Medicine > RK Dentistry
Divisions: Faculty of Dentistry > Dept of Conservative Dentistry
Depositing User: Mr Ahmad Azwan Azman
Date Deposited: 23 Oct 2012 04:03
Last Modified: 23 Oct 2012 04:03
URI: http://eprints.um.edu.my/id/eprint/3776

Actions (login required)

View Item View Item