Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices

Chooi, Wai Leong and Kwa, KiamHeong (2020) Classical adjoint commuting and determinant preserving linear maps on Kronecker products of Hermitian matrices. Linear & Multilinear Algebra, 68 (5). pp. 869-885. ISSN 03081087, DOI https://doi.org/10.1080/03081087.2018.1519010.

Full text not available from this repository.

Abstract

Let psi :circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni be a linear map on the Kronecker product of spaces of Hermitian matrices H-ni of size n(i) >= 3. (If d= 1, we identify circle times(d)(i=1) H-ni with H-ni.) We establish a condition under which psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) if and only if det (psi(circle times(d )(i=1)A(i))) = det (circle times(d )(i=1)A(i)) for all circle times(d )(i=1)A(i) is an element of circle times(d)(i=1) H-ni. Then for d is an element of {1,2}, we apply this fact to characterize maps psi : circle times(d)(i=1) H-ni -> circle times(d)(i=1) H-ni such that psi (adj (circle times(d )(i=1)A(i))) = adj (psi(circle times(d )(i=1)A(i))) with some mild conditions.

Item Type: Article
Funders: None
Uncontrolled Keywords: Classical adjoint commuting; determinant preserving; Kronecker product; Hermitian matrix
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science > Institute of Mathematical Sciences
Depositing User: Ms Zaharah Ramly
Date Deposited: 04 Nov 2024 07:53
Last Modified: 04 Nov 2024 07:53
URI: http://eprints.um.edu.my/id/eprint/36698

Actions (login required)

View Item View Item