Poly(4-vinylphenol) coated magnetic nanoparticles based dispersive solid-phase microextraction of the determination of mercury(II) in water

Benrabha, Abdulhadi Muftah Faraj and Tay, Kheng Soo (2021) Poly(4-vinylphenol) coated magnetic nanoparticles based dispersive solid-phase microextraction of the determination of mercury(II) in water. Global NEST Journal, 23 (3). pp. 407-413. ISSN 1790-7632, DOI https://doi.org/10.30955/gnj.003901.

Full text not available from this repository.

Abstract

The development of magnetic sorbent for dispersive solid phase micro-extraction (DmSPE) often requires lengthy multi-step reactions. This research revealed a simplified method for preparing magnetic sorbent for the DmSPE using poly(4-vinylphenol) (PVP). The magnetic sorbent (PVP@MNP) was prepared by coating PVP on magnetic particles (MNP). The characterization and formation of PVP@MNP were confirmed using infrared spectroscopy, scanning electron microscope, and energy-dispersive Xray spectroscopy. The primary goal of this study is to develop a sensitive DmSPE method to analyze Hg2+ in water using PVP@MNP as a magnetic sorbent. The preparation of PVP@MNP was performed in a simple coating method at room temperature. Briefly, the PVP@MNP was prepared by sonicating the mixture of MNP and PVP. This sorbent was then used as a magnetic sorbent for the extraction of Hg2+ from water. The developed PVP@MNP based DmSPE reached a low method of detection limit (0.01 mu g L-1) and limit of quantification (0.04 mu g L-1). This method also showed a wide linearity range (100 2000 mu g L-1) with a good correlation factor under optimized conditions. The developed method showed good recovery (72-90%) with good intraday and interday precision. This study also showed that the developed DmSPE method was effectively used to determine Hg2+ in drinking water, mineral water, and surface water. The result also demonstrated that PVP@MNP is reusable.

Item Type: Article
Funders: Ministry of Education, Malaysia[FP042-2016]
Uncontrolled Keywords: Mercury (II) ion;Magnetic particles;Adsorption;Removal mechanism;Metal extraction;Preconcentration
Subjects: Q Science > QD Chemistry
Divisions: Faculty of Science
Depositing User: Ms Zaharah Ramly
Date Deposited: 14 Oct 2022 05:59
Last Modified: 14 Oct 2022 05:59
URI: http://eprints.um.edu.my/id/eprint/35316

Actions (login required)

View Item View Item