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Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated
using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside
(MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC50 of 19.21 μM (MAA)
and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times
more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal
effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M
phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies
on the anticancer effects of MAA.

1. Introduction

Plants provide us with broad spectrum of biologically active
compounds that have potential therapeutic effects on a
myriad of diseases. Leea indica (Burm. f.) Merrill is a
traditional Chinese medicine which belongs to the Leeaceae
family. It is a perennial shrub which is widely grown in
tropical and subtropical countries such as Malaysia, China,
India, and Thailand. The leaves and roots of L. indica are
used to treat diabetes, cardiac diseases, and various ailments
such as fever, headache, dizziness, soreness, eczema, sprain,
leprosy, bone fracture, body pain, muscle spasm, diarrhea,
and dysentery [1–7]. In view of that, some phytochem-
ical studies have been conducted [8–11]. For biological
studies, antimicrobial, antioxidant, antiinflammatory, hypo-
glycemic, and phosphodiesterase inhibitory activities have
been reported in L. indica [10–16]. In Leeaceae family, L.
guineense and L. macrophylla were ethnomedicinally used to
treat cancer [17, 18]. For L. indica, it is used as an ingredient
in the preparation to treat leucorrhea, intestinal cancer,

and uterus cancer [19]. The leaf decoction is consumed by
women during pregnancy and delivery for birth control or to
treat obstetric diseases and body pain [20, 21]. In addition,
the dried leaves are consumed as a tea beverage and are
believed to be effective against cancer [22].

In our previous cytotoxicity screening, the crude ethanol
extract and fractions (ethyl acetate, hexane, and water) were
found to inhibit the growth of Ca Ski cervical cancer cell
line [23]. This provides the evidence for the use of L. indica
as folkloric treatment of cancer. In the present study, we
reported the further progress whereby the active fraction
(ethyl acetate) of L. indica was subjected to bioassay-guided
approach in order to isolate the cytotoxic compounds from
L. indica.

2. Methods

2.1. Plant Sample Collection, Identification and Deposition of
Voucher Specimen. From the previous report [23], the fresh
leaves of L. indica were collected, authenticated, extracted,
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Figure 1: Flow chart of bioassay-guided isolation of cytotoxic compounds from the ethyl acetate fraction of L. indica. Each of the fractions
was evaluated for its cytotoxic effect on Ca Ski cells using MTT assay. The IC50 values were means ± S.E. calculated from three experiments
performed in triplicate.

and fractionated. A voucher specimen (47365) was deposited
at the herbarium of the Institute of Biological Sciences,
Faculty of Science, University of Malaya, Kuala Lumpur,
Malaysia.

2.2. Bioassay-Guided Isolation of Active Constituents from the
Ethyl Acetate Fraction of L. indica. The active ethyl acetate
fraction (50 g) was dissolved in MeOH and loaded into
Diaion HP-20 SS (Supelco, Bellefonte) column, eluted using
a gradient solvent system of 40% MeOH and 60% H2O
with 10% MeOH increment. Thin layer chromatography
(TLC) analysis was performed on precoated silica gel 60 F254

plates (0.2 mm thick, Merck), and spots were detected by
UV illumination after spraying with 10% H2SO4 followed by
heating. Based on the TLC profiles, a total of nine combined
fractions (designated F1–F9) were pooled together. MTT
assay was performed on each fraction. The active F8 was
further subjected to silica gel (200–400 mesh, Merck) column
chromatography. The mobile phase consisted of CHCl3 :
MeOH : H2O (C : M : H, v/v). The initial solvent composition
was 100% C, and then it was changed to C : M (9.5 : 0.5),
followed by C : M : H (9 : 1 : 0.1), C : M : H (8.5 : 1.5 : 0.1),
C : M : H (8 : 2 : 0.2), C : M : H (7 : 3 : 0.5), C : M : H

(6.5 : 3.5 : 0.5), C : M : H (6 : 4 : 1), and finally to 100% M.
A total of six fractions (F81–F86) were obtained. The active
F83 was further fractionated again on silica gel 60 column
using C : M : H system. The initial solvent was 100% C, and
then it was changed to C : M : H (9 : 1 : 0.1), followed by C :
M : H (8.5 : 1.5 : 0.1), C : M : H (8 : 2 : 0.2), C : M : H (7 : 3 :
0.5), and finally to 100% M. Another six fractions (F831–
F836) were obtained. The active F835 was further purified by
prep-TLC (silica gel 60 F254 glass plates, size 20 cm × 20 cm,
Merck) using C : M : H (7 : 3 : 0.5) as solvent system and
yielded compounds 1 (55.9 mg) and 2 (26.6 mg).

2.3. Elucidation of Structural Compound. For structural elu-
cidation purposes, the compounds were subjected to instru-
mental analysis at the Forest Research Institute Malaysia
(FRIM), Selangor, Malaysia. Structures were elucidated
mainly using nuclear magnetic resonance (NMR) techniques
and Liquid Chromatography/Mass Spectrometry (LC/MS).
The compounds were dissolved in pyridine-d5 solution. The
1H, 13C, and distortionless polarization transfer (DEPT-
135) NMR spectra were recorded on a Bruker DRX 300
NMR spectrometer. The internal reference standard used was
tetramethylsilane (TMS). LC-MS analysis was performed
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Figure 2: The chemical structures of the compounds isolated from L. indica via bioassay-guided approach.

using LTQ Orbitrap mass spectrometer (Thermo Fisher
Scientific) fitted with an electrospray interface.

2.4. Cell Culture. The human cervical epidermoid carcinoma
cell line (Ca Ski, ATCC number CRL-1550) and human
fibroblast cell line (MRC 5, ATCC number CCL-171) were
purchased from the American Type Culture Collection
(ATCC, USA). Ca Ski cells were maintained in RPMI
1640 Medium (Sigma) and MRC 5 cells in EMEM (Eagle
Minimum Essential Medium) (Sigma). The media were
supplemented with 10% (v/v) heat-inactivated fetal bovine
serum (PAA Lab, Austria), 100 μg/mL streptomycin and
100 unit/mL penicillin (PAA Lab, Austria), and 50 μg/mL

amphotericin B (PAA Lab, Austria). The media were filter-
sterilized using a 0.22 μm filter membrane (Minisart, Sarto-
rius stedim). The cells were cultured in 5% CO2 incubator at
37◦C in a humidified atmosphere.

2.5. MTT Assay. MTT assay was modified from Mossmann
and used to evaluate the cytotoxic effects of each fraction
and compounds. MTT assay is widely used to assess the
viability and/or the metabolic state of the cells based on
mitochondrial respiratory activity [24]. A total of 5 × 103

cells were seeded into each well of 96-well plates and allowed
to adhere for 24 h. After 24 h, the cells were treated with
the fractions or compounds in the final concentrations
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Figure 3: Positive ESI-MS spectrum of MAA or MAX. The ion at
m/z = 627.39 represents the sodium adduct of that ion [M + Na]+.

ranging from 3.125 to 100 μg/mL. Each concentration was
performed in triplicate well. Control cells were treated with
vehicle DMSO to get the final concentration of 0.5% v/v.
The cells were then incubated for 72 h. After 72 h exposure
period, MTT (5 mg/mL) was added and further incubated
for 4 h at 37◦C. The medium was then aspirated and
the crystals formed were dissolved in 150 μL DMSO. The
absorbance was measured at 570 nm against the reference
wavelength of 650 nm. The percentage of viability was
calculated based on the formula: Viability (%) = (absorbance
of treated cells/absorbance of control cells)× 100%. The IC50

(concentration that reduces cell viability to 50%) was derived
from the dose-response curves.

MRC 5 cell line was used as a normal cell model for the
calculation of selectivity index (SI). SI value was calculated
by dividing the IC50 value of the MRC 5 cell line with the
IC50 value of Ca Ski cell line [25, 26].

In order to determine whether the cytotoxicity is
cytostatic or cytocidal, a recovery assay was conducted
whereby after the 72 h incubation (exposure period), the
medium containing the compound was removed, washed
with medium, and replaced with medium alone for a
recovery period of 72 h followed by addition of MTT and
measurement as described earlier. A sample is showing
cytostatic effect when the IC50 in the recovery assay was
higher than that of the exposure assay. Whereas for cytocidal
effect, the IC50 obtained in the recovery assay is similar to
that shown by the exposure assay [27, 28].

2.6. Trypan Blue Exclusion (TBE) Assay and Observation of
Cell Morphological Changes. Ca Ski cells were cultured at
a density of 1 × 106 cells/mL in 60 mm culture dishes.
After 24 h of attachment, the cells were treated without or
with 60 μM of MAA for different time periods. After 6–
72 h, the cells were harvested, washed with medium, and the
cell pellets were resuspended in medium. After incubation
in 0.4% trypan blue for 5 min, viable cells were counted
using a hemocytometer. At the indicated time point straight
before the cells were harvested, the cells were visualized
under an inverted phase-contrast microscope (Motic) to

Table 1: 13C NMR and DEPT 135 spectroscopic data of compound
1 (δ in p.p.m.; 75 MHz).

Carbon
Mollic acid α-L-arabinoside

(C5D5N) [33]
Compound 1 (C5D5N)

13C 13C DEPT

1 72.5 71.6 CH

2 37.7 36.8 CH2

3 81.5 80.6 CH

4 55.0 54.0 C

5 38.0 37.1 CH

6 23.3 22.4 CH2

7 26.0 25.4 CH2

8 48.4 47.5 CH

9 21.1 20.2 C

10 30.3 29.4 C

11 26.3 25.1 CH2

12 36.9 36.0 CH2

13 48.5 44.8 C

14 49.3 48.4 C

15 33.5 32.5 CH2

16 28.6 27.7 CH2

17 52.8 51.9 CH

18 18.5 17.6 CH3

19 29.8 28.9 CH2

20 36.4 35.5 CH

21 19.7 18.8 CH3

22 36.1 35.1 CH2

23 25.5 24.6 CH2

24 126.0 125.1 CH

25 131.0 130.1 C

26 26.0 25.1 CH3

27 18.0 17.0 CH3

28 180.2 179.6 C

29 10.5 9.7 CH3

30 18.7 17.8 CH3

1′ 106.3 105.5 CH

2′ 73.0 72.1 CH

3′ 74.4 73.5 CH

4′ 69.3 68.5 CH

5′ 66.5 65.8 CH2

observe the cell morphological changes upon treatment, and
photographs were taken.

2.7. Quantitative Real Time PCR (Q-PCR) Analysis of Prolifer-
ating Cell Nuclear Antigen (PCNA). A total of 1 × 106 Ca Ski
cells were seeded into 60 mm culture dishes and incubated
for 24 h for attachment. Cells were then treated without or
with 20–100 μM of MAA for 24 h. For time-course study,
cells were treated with 60 μM MAA for 0, 3, 6, 12, and
24 h. After specific treatment period, cells were harvested
and total RNA was isolated using the RNAqueous-4PCR kit
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Table 2: 13C NMR and DEPT 135 spectroscopic data of compound
2 (δ in p.p.m.; 75 MHz).

Carbon
Mollic acid β-D-xyloside

(C5D5N) [31]
Compound 2 (C5D5N)

13C 13C DEPT

1 72.6 72.0 CH

2 37.5 37.0 CH2

3 81.4 81.3 CH

4 54.9 54.2 C

5 38.0 37.1 CH

6 23.0 22.4 CH2

7 28.7 29.0 CH2

8 48.4 47.6 CH

9 21.2 21.4 C

10 30.4 29.6 C

11 26.1 25.5 CH2

12 37.0 36.0 CH2

13 45.8 44.9 C

14 49.5 48.5 C

15 33.5 33.4 CH2

16 26.4 27.8 CH2

17 52.9 51.9 CH

18 18.8 17.8 CH3

19 30.0 29.4 CH2

20 36.4 35.8 CH

21 18.8 17.7 CH3

22 36.5 35.5 CH2

23 25.5 24.6 CH2

24 125.2 125.2 CH

25 131.0 130.2 C

26 25.7 25.2 CH3

27 18.0 17.9 CH3

28 180.2 181.4 C

29 10.5 10.1 CH3

30 19.7 18.8 CH3

1′ 106.5 105.6 CH

2′ 75.5 74.7 CH

3′ 78.1 77.2 CH

4′ 71.2 70.5 CH

5′ 67.1 66.4 CH2

(Applied Biosystem) according to the manufacturer’s direc-
tions. The RNA concentration was determined using spec-
trophotometry. The gene expression of PCNA was assessed
by one-step SYBR Green relative real-time PCR (Rotor-
Gene System, Qiagen) and normalized to GAPDH reference
control amplifications. The primer sequences for PCNA and
GAPDH were forward 5′-GCCTGCTGGGATATTAGCTC-
3′, reverse 5′-CATACTGGTGAGGTTCACGC-3′ and for-
ward 5′-CCAGGGCTGCTTTTAACTCTG-3′, reverse 5′-
CGTTCTCAGCCTTGACGGTG-3′, respectively. The PCR
amplification reactions were carried out in a total volume
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Figure 4: Effect of MAA and MAX on the cell viability of Ca Ski
cervical cancer cells (a) and MRC 5 normal cells (b). Cells were left
untreated or treated with increasing doses of MAA or MAX for 72 h.
Camptothecin (CPT) was used as positive control. The cell viability
was measured by MTT assay as described in method. The data were
mean values ± S.E. of three different experiments.

of 25 μL for 30 cycles of 45 seconds at 95◦C, 45 seconds
at 56◦C, and 120 seconds at 72◦C. The mean fluores-
cence threshold value (CT) of each sample was obtained
according to the manufacturer’s guidelines and used to
determine ΔCT values where by ΔCT = CT target gene (PCNA)−
CT reference gene (GAPDH). The relative fold change in PCNA
expression in the treated sample over the untreated control
was calculated with the comparative ΔΔCT method where
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Figure 5: Bar charts showing IC50 and SI values of MAA, MAX, and camptothecin (CPT). IC50 (concentration that reduces cell viability to
50%) values were determined from the dose response curve generated by the MTT assay. SI (Selectivity index) values were determined by
dividing the IC50 value of MRC 5 with the IC50 value of Ca Ski. Data for IC50 were means ± S.E. calculated from three experiments.
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Figure 6: Effects of MAA on the viable cell count on Ca Ski cells.
Cells were treated without or with 60 μM of MAA for 6–72 h. At
each time point, the viable cell numbers were counted using a
hemocytometer as described in TBE assay in the methods. Each
point represents means ± S.E. from three experiments.

ΔΔCT = ΔCT sample − ΔCT untreated and was calculated using
formula 2−ΔΔCT [29].

2.8. Cell Cycle Analysis. The cell cycle distribution was as-
sessed using propidium iodide (PI) staining [30]. Ca Ski cells
were seeded in 60 mm culture dishes (1 × 106 cells) and left

24 h for attachment. The cells were then treated without or
with 60 μM MAA for 12–72 h. After the designated treatment
period, both adherent and floating cells were harvested
and washed twice with PBS. Cell pellets were resuspended
in 100 μL of PBS and fixed with absolute ethanol and
stored at −20◦C for 24 h. Fixed cells were washed twice
with PBS, and the cell pellets were incubated in a buffer
containing 50 μg/mL PI, 0.1% sodium citrate, 0.1% Triton-
X-100, and 100 μg/mL RNase A for 45 min in the dark at
room temperature. The percentage of cells in the sub-G1,
G1, S, and G2/M-phases of the cell cycle was then analyzed
using a FACS Calibur flow cytometer (Beckton Dickinson).
Data were acquired and analyzed using Cell Quest software
(Becton Dickinson).

2.9. Data Analysis. All the results were presented as mean ±
standard error (S.E.) of three experiments. Significant differ-
ence was analyzed by Student t-test. A P value < 0.05 was
regarded as a significant difference from the corresponding
control group.

3. Results and Discussion

3.1. Mollic Acid Arabinoside (MAA) and Mollic Acid Xyloside
(MAX) Were Isolated from Ethyl Acetate Fraction of L. indica
via MTT Bioassay-Guided Separation. Based on our previous
study, the ethyl acetate fraction of L. indica demonstrated the
strongest cytotoxic effect on Ca Ski cells [23]. Hence, it was
subjected to MTT assay-guided isolation. The results were
summarized in Figure 1. MTT test on the first 9 fractions
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Figure 7: Effect of MAA on the morphological changes of Ca Ski cells. The MAA-untreated cells represented cells treated with vehicle DMSO
(final 0.5% v/v) for 6 h. Cells were treated with 60 μM of MAA for 6–72 h and visualized under microscope and photographed. Magnification:
100x. After treatment with MAA, cells showed progressive loss of normal elongated shape. Cells shrunk to smaller rounded cells (shown by
the arrows) and detached from the surface.

(F1–F9) showed that Ca Ski cells were most susceptible to
F8. Further separation of F8 yielded another 6 fractions (F81
to F86). Among the fractions, F83 was found to be the most
effective. Subsequent fractionation of F83 yielded another 6
fractions (F831 to F836). The active F835 was subjected to
prep-TLC and this led to the isolation of two compounds,
compound 1 and compound 2.

They were identified as (1) mollic acid α-L-arabinoside
(MAA) and (2) mollic acid β-D-xyloside (MAX) (Figure 2).
They were isolated from L. indica for the first time. Their
structures were confirmed by comparison of the obtained
spectral data with the published literature data [31–33]. The
structures were further confirmed by electrospray ionization
mass spectrometry (ESI-MS), in a positive mode (Figure 3).
The MS spectra showed the molecular ion peak at m/z:
627.3851, which corresponds to a molecular formula of
C35H56O8.

Compound 1 was identified as 1α, 3β-dihydroxy-
cycloart-24-ene-28-oic acid 3-O-[α-L-arabinopyranoside],
C35H56O8. Positive ESI-MS m/z: 627.3851 [M+Na]+. 1H
NMR (125 MHz, C5D5N): δ 0.47 (1 H, d, J = 4.0 Hz, H-
19A), 0.75 (1 H, d, J = 4.0 Hz, H-19B), 0.85–1.66 (6 × CH3),
3.39–4.42 (arabinose protons; H-1 of aglycone), 5.01 (1 H, d,
J = 6.6 Hz, H-1′ of arabinose), 5.21–5.5 (2 H, m, H-3 α, H-
24). The 13C NMR data of compound 1 was shown in Table 1.

Compound 2 was identified as 1α, 3β-dihydroxy-
cycloart-24-ene-28-oic acid 3-O-[β-D-xylopyranoside],
C35H56O8. Positive ESI-MS m/z: 627.3851 [M+Na]+. 1H
NMR (125 MHz, C5D5N): δ 0.44 (1 H, d, J = 4.0 Hz, H-
19A), 0.72 (1 H, d, J = 4.0 Hz, H-19B), 0.91–1.68 (6 × CH3),
3.39–4.42 (xylose protons; H-1 of aglycone), 5.08 (1 H, d,
J = 6.6 Hz, H-1′ of xylose), 5.20–5.48 (2 H, m, H-3 α, H-24).
The 13C NMR data of compound 2 was shown in Table 2.

3.2. MAA and MAX Were Cytotoxic to Ca Ski Cells with
Less Detrimental Effect on Normal Cells. MAA and MAX
were evaluated for their cytotoxic effect on Ca Ski cervical
cancer cells and MRC 5 normal cells using MTT assay. A
72 h exposure to Ca Ski cells with MAA or MAX led to
a significant dose-dependent reduction in cell viability.
According to Figure 4, the decrease in cell viability ranged
from 20–95% and 6–90% when the cells were treated with
3.125–100 μg/mL of MAA and MAX, respectively. As shown
in Figure 5, the IC50 values of MAA and MAX for Ca Ski cells
were 11.60± 0.29 μg/mL (19.21 μM) and 20.13± 0.21 μg/mL
(33.33 μM), respectively. When compared to Ca Ski cells,
MAA and MAX were less cytotoxic to the normal cells, as
revealed by the relatively higher IC50 values on MRC 5 (94.32
± 0.75 μg/mL for MAA and 79.25 ± 0.66 μg/mL for MAX).
In contrast, camptothecin (CPT) displayed comparable IC50
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Figure 8: Effect of MAA on the PCNA expression in Ca Ski cells. Cells were incubated in the absence or presence of 20–100 μM of MAA
for 24 h. Cells were also incubated with 60 μM of MAA for 0, 3, 6, 12, and 24 h. After indicated time, cells were collected; total RNA was
extracted and Q-PCR was performed as described in methods. Results were expressed as relative expression of PCNA compared to the
untreated control, normalized with GAPDH. Values were mean ± S.E. from three independent experiments.

value on both Ca Ski and MRC 5 cells (2.51 ± 0.33 and
4.74 ± 0.33 μg/mL). The small difference in IC50 value led
to our deduction that CPT cannot differentiate between
normal and cancer cells and killed both cells at almost the
same efficiency. This lack of tumor-cell specificity was also
reported by other scholar [34].

The primary goal of cancer chemotherapy is to target
specifically at cancer cells but innocuous to normal cells.
However, many anticancer drugs fail to meet this criterion,
as they cannot discriminate between cancer and normal
cells, which make them cytotoxic not only to cancer cells,
but also to normal cells. Therefore, development of novel
cancer chemotherapeutic agent with a higher potency and
specificity against cancer cells is urgently needed. It is
interesting to note that MAA and MAX exhibited approxi-
mately 20-fold and 17-fold higher IC50 values against MRC
5 when compared to CPT. Moreover, we also compared
the cytotoxicity of MAA, MAX, and CPT based on their
SI values. MAA was about 8 times more cytotoxic to Ca
Ski cells compared to MRC 5, while MAX was about 4
times more cytotoxic to Ca Ski cells compared to MRC 5
(Figure 5).

3.3. MAA Caused Both Cytostatic and Cytocidal Effects on
Ca Ski Cells. Since MAA exhibited higher SI and lower
IC50 compared with MAX, it was selected for further
investigations. To characterize the cytotoxic effect of MAA,
we employed two cytotoxicity assays which measure different
parameter of cell death, namely MTT (dye reduction) and

TBE (dye exclusion) assays, which measure mitochondria
metabolic death and cell membrane integrity, respectively.
As mentioned earlier, we showed that MAA caused a con-
spicuous dose-dependent reduction of formazan formation
in Ca Ski cells (Figure 4(a)). This indicated that the cytotoxic
action was mediated via disruption of mitochondrial dehy-
drogenase system inside the cells.

The cytotoxic effect of MAA was further substantiated by
the TBE assay. As shown in Figure 6, the control untreated
cells proliferated faster compared to the treated cells, as
demonstrated by the rapid exponential growth of the cells
in the absence of MAA. In contrast, the cell proliferation
was hindered when incubated with the presence of MAA.
Treatment for 6 h modestly inhibited the cell proliferation,
while prominent antiproliferative effect was observed at 12 h
and 24 h. Prolong treatment resulted in decrease of cell
number from the initial cell seeding density, indicating a
more pronounced disruption of cell-membrane integrity
(due to uptake of trypan blue). Simultaneously, we observed
the cellular morphological changes during MAA treatment
(Figure 7). The cells remained elongated in shape and
attached at 6 and 12 h, while at 24–72 h, the cells progres-
sively shrunk to smaller rounded shape and started to detach.
During early hours (6–24 h) of treatment, cytostatic effect
was evident, as shown by the inhibition of cell proliferation
(antiproliferation) in the TBE assay. At prolong treatment,
cytocidal effect became pronounce, as the cells died and
detached from the surface. This was in agreement with the
MTT 72 h end-point assay, in which the IC50 value obtained
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Figure 9: Effect of MAA on cell cycle phase distribution in Ca Ski cells. Cells were treated with 60 μM MAA for 12–72 h. The untreated cells
correspond to cells without MAA treatment at 12 h, and similar results were obtained at other incubation times. After treatment, cells were
harvested, fixed, stained with PI, and analyzed by flow cytometry as described in methods. (a) Representative histograms showing cell cycle
distribution. (b) Bar charts showing percentage of cells in sub-G1, G1, S, and G2/M phases of the cell. Results are mean values± S.E. of three
experiments. The percentage of the cell cycle phase in the treated cells was compared to the corresponding phase in the untreated control
cells. Statistical significance is indicated by ∗P < 0.05.

in the recovery assay is almost the same to the exposure assay.
Hence, we can say that cytostatic and cytocidal effects were
responsible for the cytotoxic effect of MAA in Ca Ski cells.

3.4. MAA Inhibited the Proliferation of Ca Ski Cells. Since
we showed that MAA exerted cytostatic effect on Ca Ski

cells, we next aimed to evaluate the antiproliferative effect
of MAA. Previous reports have shown that proliferating cell
nuclear antigen (PCNA) is greatly expressed in most of the
proliferating cancer cells including cervical cancer [35, 36].
PCNA is a cell proliferation biomarker which plays a pivotal
role in the decision of the life or death of the mammalian
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cells [37]. Hence, the effect of MAA on the expression level
of PCNA was investigated. The cells were treated with MAA
and the relative expression of PCNA was measured by Q-
PCR. Results showed that MAA significantly decreased the
expression of PCNA in a dose- and time-dependent manner
(Figure 8). These data suggested that the antiproliferative
effect of MAA could be attributed to the downregulation of
PCNA expression.

3.5. MAA Induced Cell Cycle Arrest and Hypodiploid Cells.
Earlier, we have showed that the cytotoxicity of MAA in
Ca Ski cells was derived from both cytostatic and cytocidal
effects. Moreover, we also demonstrated that the cytostatic
effect was due to antiproliferative effect, as reflected by the
decrease of the proliferation marker, PCNA. Subsequently,
we checked whether the antiproliferative effect was associ-
ated with any cell cycle phase-specific arrest. After treated
with MAA for 12 and 24 h, the proportion of S-phase and
G2/M-phase in the treated cells was significantly higher
compared to the untreated cells. The perturbation of cell
cycle progression, caused by the sustained accumulation of
cells in the S and G2/M phases may be in part responsible
for the cytostatic/antiproliferative effect of MAA. This was in
agreement with the retardation of cell proliferation by MAA
at 12 and 24 h in the TBE assay (Figure 6). In addition, after
treated with MAA, cell cycle analysis showed a significant
increase of hypodiploid cells (sub-G1) in a time-dependent
manner. This was accompanied with a concomitant decrease
of the cells in the G1 phase (Figure 9). Notably, the presence
of hypodiploid cells started after 12 h of treatment and
increased about 20-fold after 72 h. These hypodiploid cells
are indicator of apoptotic cells [38]. However, other assays
are needed to confirm the induction of apoptosis. Neverthe-
less, the present sub-G1 analysis served as a preliminary study
on the apoptosis-inducing potential of MAA in Ca Ski cells.

The mollic acid glycosides (MAA and MAX) isolated
from L. indica belong to the group called cycloartane triter-
penoid glycoside. Recently, this group of compounds has
received considerable attention for their cytotoxic potential
[39, 40]. For mollic acid glycosides, their anticancer effects
have not been explored yet based on the lack of scientific
studies concerning their cytotoxic effect. In a previous study,
mollic acid glycoside was suspected to be the compound
responsible for the strong cytotoxic effect of Combretum
molle on cancer cells [41]. However, no further study was
conducted to verify the compound responsible for the
cytotoxic action. In the present study, we firstly demon-
strated that mollic acid glycosides exerted cytotoxic effect on
cancer cells.

Therefore, our findings here warrant the need for
further investigation on the anticancer potential of MAA,
especially for cervical cancer. Elaborate studies to identify the
mechanisms of action are in progress.

4. Conclusion

Conclusively, two cytotoxic cycloartane triterpenoid glyco-
sides, namely mollic acid α-L-arabinoside (MAA) and mollic
acid β-D-xyloside (MAX), were isolated form L. indica for

the first time through bioassay-guided method. Preliminary
studies showed that the cytotoxicity of MAA was associated
with decrease of PCNA expression, cell cycle S and G2/M
phases arrest, and induction of hypodiploid cells.
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