Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction

Frimayanti, N. and Yam, M.L. and Lee, H.B. and Othman, R. and Zain, Sharifuddin Md and Rahman, N.A. (2011) Validation of quantitative structure-activity relationship (QSAR) model for photosensitizer activity prediction. International Journal of Molecular Sciences, 12 (12).

[img]
Preview
PDF
22.pdf

Download (220kB)
Official URL: http://www.ncbi.nlm.nih.gov/pubmed/22272096

Abstract

Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r(2) value, r(2) (CV) value and r(2) prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC(50) values ranging from 0.39 μM to 7.04 μM. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r(2) prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.

Item Type: Article
Funders: UNSPECIFIED
Additional Information: Department of Chemistry, Faculty of Science, University of Malaya, Lembah Pantai 50603, Kuala Lumpur, Malaysia; E-Mails: nenifrimayanti@yahoo.com (N.F.); smzain@um.edu.my (S.M.Z.)
Uncontrolled Keywords: QSAR; Photodynamic Therapy; Photosensitizer; Porphyrin; IC50 Half Maximal Inhibitory Concentration
Subjects: R Medicine
Divisions: Faculty of Science > Department of Chemistry
Depositing User: Mr. Faizal Hamzah
Date Deposited: 03 Jul 2012 02:47
Last Modified: 25 Oct 2019 09:11
URI: http://eprints.um.edu.my/id/eprint/3459

Actions (login required)

View Item View Item