High cyclability energy storage device with optimized hydroxyethyl cellulose-dextran-based polymer electrolytes: Structural, electrical and electrochemical investigations

Azha, Muhammad A. S. and Dannoun, Elham M. A. and Aziz, Shujahadeen B. and Kadir, Mohd F. Z. and Zaki, Zaki Ismail and El-Bahy, Zeinhom M. and Sulaiman, Mazdida and Nofal, Muaffaq M. (2021) High cyclability energy storage device with optimized hydroxyethyl cellulose-dextran-based polymer electrolytes: Structural, electrical and electrochemical investigations. Polymers, 13 (20). ISSN 2073-4360, DOI https://doi.org/10.3390/polym13203602.

Full text not available from this repository.

Abstract

The preparation of a dextran (Dex)-hydroxyethyl cellulose (HEC) blend impregnated with ammonium bromide (NH4Br) is done via the solution cast method. The phases due to crystalline and amorphous regions were separated and used to estimate the degree of crystallinity. The most amorphous blend was discovered to be a blend of 40 wt% Dex and 60 wt% HEC. This polymer blend serves as the channel for ions to be conducted and electrodes separator. The conductivity has been optimized at (1.47 & PLUSMN; 0.12) x 10(-4) S cm(-1) with 20 wt% NH4Br. The EIS plots were fitted with EEC circuits. The DC conductivity against 1000/T follows the Arrhenius model. The highest conducting electrolyte possesses an ionic number density and mobility of 1.58 x 10(21) cm(-3) and 6.27 x 10(-7) V(-1)s(-1) cm(2), respectively. The TNM and LSV investigations were carried out on the highest conducting system. A non-Faradic behavior was predicted from the CV pattern. The fabricated electrical double layer capacitor (EDLC) achieved 8000 cycles, with a specific capacitance, internal resistance, energy density, and power density of 31.7 F g(-1), 80 omega, 3.18 Wh kg(-1), and 922.22 W kg(-1), respectively.</p>

Item Type: Article
Funders: Universiti Malaya [Grant No: FP039-2019A], Taif Researchers Supporting Project [Grant No: TURSP-2020/42], Taif University, Taif, Saudi Arabia, University of Sulaimani, University of Malaya and Komar University of Science and Technology
Uncontrolled Keywords: Solid polymer electrolyte; Dextran; Ammonium bromide; Supercapacitors; EDLC
Subjects: Q Science > Q Science (General)
Divisions: Centre for Foundation Studies in Science
Institute of Advanced Studies
Depositing User: Ms Zaharah Ramly
Date Deposited: 27 Jun 2022 07:14
Last Modified: 27 Jun 2022 07:14
URI: http://eprints.um.edu.my/id/eprint/33991

Actions (login required)

View Item View Item