Partial characterization of genes encoding the ATPbinding cassette proteins of *Cryptosporidium parvum*

Li-Li Chan and Mun-Yik Fong

Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

ABSTRACT. The present study aims to explore the possible mechanisms underlying the multidrug resistance characteristic of Cryptosporidium parvum by detecting the presence of ATP-binding cassette (ABC) protein encoding genes, especially one that shows high similarity to members belonging to the multidrug resistance protein (MDR) and multidrug resistance associated protein (MRP) subfamilies. PCR using ABC-specific degenerate primers successfully amplified two unique fragments, designated Cpnbd1 and Cpnbd2, from C. parvum genomic DNA. Cpnbd1 exhibited high degree of homology (99-100%) with the nucleotidebinding domains (NBDs) at the NH₂-terminal halves of two previously reported ABC proteins (CpABC and CpABC1) of human and bovine origin C. parvum isolates. It is likely that CpABC, CpABC1 and Cpnbd1 were encoded by homologous genes of a type of ABC transporter protein found in different C. parvum isolates. However, Cpnbd2 showed moderate levels of similarities (28-49%) to the NBDs of four ABC proteins characterised in C. parvum to date. Therefore, Cpnbd2 could be a novel member of an ABC superfamily of proteins in C. parvum. Phylogenetic analyses on a list of ABC transporters known to associate with MDR phenotype has significantly linked Cpnbd1 and Cpnbd2 to these transporters, thus suggesting that Cpnbd1 and Cpnbd2 proteins may contribute to the intrinsic multidrug resistance phenotype of C. parvum.

INTRODUCTION

Cryptosporidium parvum is an intestinal parasitic protozoa which causes selflimited diarrhoea in immunocompetent individuals and devastating and fulminant diarrhoea in immunocompromised patients (Griffiths, 1998). Despite extensive effort in searching for chemotherapeutic agents against cryptosporidiosis, it remains elusive. The major impediment in the use of a promising chemotherapeutic compound is the intrinsic multidrug resistance exhibited by C. parvum towards an array of drugs that is generally effective against similar organisms (Chen et al., 2002). It is postulated that the intrinsic multidrug resistance of C. parvum is mediated by a general transporting mechanism, possibly by the ATP-binding cassette (ABC) superfamily of transporters.

The ABC superfamily of transporters, which consists of more than 1,000 members, is the largest and most widespread protein family known to date. The vast majority of its members are ATP driven transporters, which is responsible of translocating a wide variety of compounds across biological membranes (Higgins, 1992; Ambudkar et al., 1999). Most ABC transporters share a similar architecture: a fundamental structure made up of four domains. Two of these domains are the hydrophobic membranespanning domains (MSDs), and two other domains are the hydrophilic nucleotidebinding domains (NBDs). NBDs are evolutionally conserved domains, which have considerable sequence homologies across the entire family, and the homologies range from 30% to 50%. Two NBDs within a transporter show higher similarity to each other than to the

respective domains from other member of transporter (Higgins, 1992; Ambudkar *et al.*, 1999).

In addition to their physiological functions, ABC proteins have enormous medical relevance. Members of the superfamily, the multidrug resistance protein (MDR) (Juliano & Ling, 1976) and multidrug resistance associated protein (MRP) (Cole & Deeley, 1993), are almost always associated with the multidrug resistance phenomenon exhibited by many intrinsic or acquired drug resistance cancer cell lines or human pathogens (Davidson, 2002). Transfection studies and investigation on the drug sensitive partial revertant cell lines clearly elaborated the correlation between MDR, MRP and multidrug resistance phenotypes (Gao et al., 1998).

The present study aimed to explore and characterise the possible mechanisms underlying the MDR characteristic of *C. parvum* by detecting the presence of ABC transporter protein encoding genes, especially one that shows high similarity to members belonging to the MDR and MRP subfamilies of transporters.

MATERIALS AND METHODS

C. parvum genomic DNA extraction

C. parvum oocysts (IOWA isolate, bovine genotype) used in this study were purchased from Waterborne Inc, USA. Genomic DNA was extracted from the oocysts by using the QIAamp DNA blood mini kit (QIAGEN, Germany).

Degenerate primers for PCR amplification of ABC transporter encoding genes

PCR approach using degenerate primers, was used to identify ABC transporter encoding genes in *C. parvum*. The sense and antisense primers corresponding to peptide GCGKST(L/I)(I/L) and (G/A)(V/ S)KLSGGQ were selected based on the analysis of the highly conserved NBDs of several ABC transporter proteins (Dallagiovanna *et al.*, 1994). The degeneracy of the primers was adjusted to account for the codon bias found for *C*. *parvum* genes.

PCR amplification of ABC transporter encoding genes

The amplification of *C. parvum* ABC transporter protein genes involved two rounds of PCR, namely the primary and secondary amplifications. In primary amplification, degenerate primers were incubated with *C. parvum* genomic DNA, according to standard protocol, in a volume of 20µl. The optimum PCR annealing temperature was 55° C. The secondary PCR amplification condition was identical to the first round, except that 1 µl of 50X diluted primary PCR products was used as DNA template.

PCR product purification and cloning

The QIAquick gel extraction kit (QIAGEN, Germany) was used to extract DNA bands from agarose gels. Purified PCR products were cloned into pGEM[®]-T vector (Promega, USA), and transformed into *Escherichia coli* JM109 strain (Promega, USA).

Sequencing analyses

The resultant positive recombinant clones were sequenced in both directions on an ABI PRISM[®] 377 DNA sequencer (BST Techlab, Singapore). Sequencing was primed using T7 forward and SP6 reverse promoter primers encoded on the pGEM[®]-T.

Nucleotide and amino acid sequences were compared with the sequences deposited in National Center for Biotechnology Information (NCBI, National Institutes of Health, USA) databases via the BLAST server. Multiple alignments of DNA and protein sequences were performed using the ClustalW programme. Protein similarities were calculated using the GeneDoc sequence editor. Conservative amino acids are grouped as: (D,E,N,Q,H) (S,A,T) (K,R) (F,Y) (L,I,V,M). The aligned protein sequences were analysed by distance based neighbour-joining method, using the Njplot programme. Bootstrap replicates of 1000 were set to assess the reliability of the tree. An unrooted tree was also constructed by using the Njplot.

RESULTS AND DISCUSSION

PCR using ABC-specific degenerate primers successfully amplified two unique fragments from C. parvum genomic DNA. Sequencing of the fragments revealed two partial open reading frames (ORFs). ORF1 was 279 base pairs in length, which encoded a peptide of 93 amino acids. ORF2 was 303 base pairs in length, and encoded a 101-amino acid peptide. Comparisons of ORF1 and ORF2 to the protein sequences in the NCBI databases revealed that both fragments shared high similarities with NBDs of a variety of ABC transporters. Thus, ORF1 and ORF2 were respectively designated Cpnbd1 and Cpnbd2. For protein sequences, they were designated as Cpnbd1 and Cpnbd2 [Figures 1(a) and (b)].

Comparisons of Cpnbd1 and Cpnbd2 with the NBDs of *C. parvum* ABC proteins

At the amino acids level, Cpnbd1 was 100% identical to the NH₂-terminal half (_N) of CpABC1, an ABC protein characterised in *C. parvum* KSU-1 isolate (bovine genotype) (Zapata *et al.*, 2002). At the nucleotide level, both gene fragments showed 99% identity. The difference was due to a single nucleotide substitution at the third position of codon-33, which was a silent substitution, as both CAG⁹⁹ in *Cpnbd1* and CAA⁹⁹ in *CpABC1_N* codes for the amino acid glutamine.

Cpnbd1 also showed high similarity to the NBD at the NH_2 -terminal of CpABC, the gene encoding the ABC protein of *C. parvum* SFGH1, an isolate of human genotype (Perkin *et al.*, 1999). Both proteins were 97% and 98% identical at amino acid and nucleotide levels, respectively, and the differences were attributed to four nucleotide substitutions. Two of the nucleotide substitutions resulted in silent changes: CAG⁹⁹ at codon-33 of Cpnbd1 and CAA⁹⁹ of CpABC_N, which codes for glutamine, and GAT¹⁷⁴ at codon-58 of Cpnbd1 and GAC174 of *CpABC* N, which codes for aspartic acid. Two other nucleotide substitutions, which occurred at the first position of the corresponding codons, resulted in amino acid changes. These were the ⁶⁴ATT at codon-22 of Cpnbd1, which codes for isoleucine, and the corresponding codon ⁶⁴GGT at *CpABC*_N, which codes for valine. Whereas at codon-42, ¹²⁴GTT of Cpnbd1 coding for valine while ¹²⁴ATT of *CpABC*_N coding for isoleucine. The high degree of similarities between Cpnbd1, CpABC and CpABC1 implied that they could be encoded by homologous genes of a type of ABC transporter protein found in different C. parvum isolates.

As for Cpnbd2, it showed moderate similarities (28 - 49 %) to the NBDs at both NH₂- and COOH-terminal halves of ABC proteins characterised in *C. parvum* to date (Table 1). Therefore, Cpnbd2 could be a novel member of an ABC superfamily of proteins in *C. parvum*.

Comparisons of Cpnbd1 and Cpnbd2 with the NBDs of ABC proteins of some drug resistance cells

Multiple alignment (Figures 2 and 3) and phylogenetic (Figure 4) analyses on a list of ABC transporters known to associate with MDR phenotype (EhPGP 5: Entamoeba histolytica P-gp-like transporters 5; EhPGP 6: E. histolytica P-gp-like transporters 6; HuABCB1: *Homo sapien* ATP-binding cassette B1; HuABCC1: *H. sapien* ATP-binding cassette C1; HuABCC2: H. sapien ATP-binding cassette C2; LaMDR1: Leishmania amazonensis multidrug resistance protein 1; Ldmdr1: L. donovani Multidrug resistance protein 1; LeMDR1: L. enrietti multidrug resistance protein-like 1; TbMRPA: Trypanosoma brucei multidrug resistance protein A; and TbMRPE: T. *brucei* multidrug resistance protein E) has strongly linked Cpnbd1 to HuABCC1 and HuABCC2.

HuABCC1 is a human MRP transporter identified in the H69AR doxorubicinselected human lung carcinoma cell line (Mirski et al., 1987). In normal tissue, HuABCC1 is found ubiquitously expressed at low levels. Certain normal tissues, however, do highly express HuABCC1 at cellular levels. In human cancer cells, HuABCC1 has been found overexpressed in various cancer types. In certain cancer types, HuABCC1 expression is an important predictor of treatment outcome. The expression of HuABCC1 is usually highest in tumours that derived from tissues that normally express the transporter protein, and tumours arising from these tissues are known to be intrinsically resistant against chemotherapeutic treatment (Cole et al., 1994; Hipfner et al., 1999).

HuABCC2 is the second member identified in the MRP subfamily of transporter in human. Taniguchi et al. (1996) successfully isolated the HuABCC2 encoding gene from a cisplatin-resistant human cancer cell line. The research group also reported good correlation between cisplatin resistance and the up-regulation expression of HuABCC2. HuABCC2 has been detected in the liver, kidneys, intestine, placenta and the brain at normal level. HuABCC2 is believed to play an important role in eliminating endogenous toxic compounds and xenobiotics from the body. In hepatocytes, the expression of HuABCC2 is markedly increased by various chemical carcinogen and chemopreventive agents (Payen et al., 2002). Meanwhile, intestinal HuABCC2 may play a role in reducing the level of 2amino-1-methyl-6-phenylimidazo [4,5-6] pyridine; the most abundant food derived carcinogen, which is formed during cooking, frying and grilling of meat (Dietrich et al., 2001).

The relationship of Cpnbd2 with the same group of transporters was less distinct. It was clustered in a clade which consisted of the NBDs of various ABC transporter proteins (Figure 4). The similarities of Cpnbd2 to these NBDs were generally moderate (Table 1). Interestingly, Table 1. Quantitative analysis of amino acid similarities between Cpnbd1, Cpnbd2 and the NBD at the NH₂-terminal (_N) half and COOH-terminal (_C) half of the ABC proteins of several drug resistant parasitic protozoan and *H. sapiens*

ABC protoin	Simila	rity (%)		
ABC protein	Cpnbd1	Cpnbd2		
CpABC_N	100	30		
CpABC_C	46	43		
CpABC1_N	100	30		
CpABC1_C	46	46		
CpABC2_N	58	28		
CpABC2_C	40	49		
CpABC3_N	37	36		
CpABC3_C	41	35		
EhPGP5_N	43	36		
EhPGP5_C	37	36		
EhPGP6_N	30	37		
EhPGP6_C	40	32		
HuABCA5_N	Nil	65		
HuABCB1_N	35	39		
HuABCB1_C	36	33		
HuABCC1_N	68	32		
HuABCC1_C	36	41		
HuABCC2_N	68	32		
HuABCC2_C	39	34		
LaMDR1_N	37	36		
LaMDR1_C	41	30		
Ldmdr1_N	37	36		
Ldmdr1_C	42	30		
LeMDR1_N	36	35		
LeMDR1_C	40	31		
TbMRPA_N	59	39		
TbMRPA_C	36	37		
TbMRPE_N	60	38		
TbMRPE_C	39	39		
TcABCA1_N	Nil	54		

(a) Cpnbd1/Cpnbd1

(b) *Cpnbd2*/Cpnbd2

Figure 1. Nucleotide and deduced amino acid sequences of (a) *Cpnbd1*/Cpnbd1, and (b) *Cpnbd2*/Cpnbd2. Nucleotide sequences are indicated by small letters, whereas the deduced amino acid sequences are indicated by capital letters and are represented by single-letter codes.

		*	10	*	20		*	30	*	4.0	-	EO		
~ 1.14			10							40	*	50		
Cpnbd1	:	GCGKST		~		_						SSWIING		4(
CpABC_N	:	GSGKTT	UTELI	QELF	CPRLG	TVQS						SSWIIING	:	4(
CpABC1_N	:	GSGKTT	UTEL IT	QELF	(PRLG	TIQS				NGSVF	YCSQ	SSWIING	:	4(
CpABC2_N	:	GCGKSS	I I KAIII	NEIF	RPSAS	ΝΊΥΥ	R]	PRET	NSIIS	YSPQ	LPWIPSG	:	45
CpABC3_N	:	GCGKSS	IIKLII	RLYI	PDKG	KULL:	DGLN	IKKYDI	LAFL	REQIT	IVD	ESKLFND	:	53
HuABCC1 N	:	GCGKSS	LI SALI	AEMI	KVEG	HVAI			;	KGSVA	YVPQ	QAWIQND	:	4(
HuABCC2 N	:	GSGKSS	IIISAMI	GEME	силне	н ті			;	KGTTA	YVPO	OSMIO NG	:	4(
· · · · –	-													
_	-													
_	-	* 6			70	*	80	*	90	*	10	0 *		
_	:	* 6	0 *	7	70	*	80					0 * VK <mark>LSGGQ</mark>	:	92
- Cpnbdl CpABC N	:	* 6 TVRSNI	0 * ILDLP-	FDQZ	70 AWYDI	* V I NA	80 CSLV	YDLKAI	4PNG	DLTE <mark>I</mark>	GENG			92 92
- Cpnbd1 CpABC_N	:	* 6 TVRSNI TIRSNI	0 * ILDLP- ILDLP-	FDQ FDQ	70 AWYDI AWYDI	* VINA VINA	80 CSLV CSLV	YDLKAI YDLKAI	4PNG 4PNG	DLTEI DLTEI	GENG GENG	V <mark>K</mark> LSGGQ INLSGGQ	:	
- Cpnbd1 CpABC_N CpABC1_N	:	* 6 TVRSNI TIRSNI TVRSNI	0 * ILDLP - ILDLP - ILDLP -	FDQ FDQ FDQ FDQ	AMADI AMADI AMADI	* VINA VINA	80 CSLV CSLV CSLV	YDLKAI YDLKAI YDLKAI	APNG APNG APNG	DLTEI DLTEI DLTEI	GENG GENG GENG	VKLSGGQ INLSGGQ INLSGGQ	:	92
- Cpnbd1 CpABC_N CpABC1_N CpABC2_N	:	* 6 TVRSNI TIRSNI TVRSNI SVRSAI	0 * ILDLP - ILDLP - ILDLP - LLGRE -	FDQ FDQ FDQ FDQ FDQ FDQ FDQ FDQ FDQ FDQ	70 Awydi Awydi Skyel	* VINA VINA VINA	80 CSLV CSLV CSLV C <mark>Q</mark> L <mark>K</mark>	YDLKAI YDLKAI YDLKAI EDFSSI	4PNG 4PNG 4PNG VQRG	DLTEI DLTEI DLTEI DL <mark>RV</mark> V	GENG GENG GENG DEGG	VKLSGGQ INLSGGQ INLSGGQ CSLSGGQ	:	92 92 97
- Cpnbd1 CpABC_N CpABC1_N CpABC2_N CpABC3_N	::	* 6 TVRSNI TIRSNI TVRSNI SVRSAI TIR <mark>O</mark> NI	0 * ILDLP - ILDLP - ILDLP - LGRE - LYGNEN	FDQZ FDQZ FDQZ WNRE JATEF	70 AWYDI AWYDI SKYEL CEIEN	* VINA VINA IVDC ALRL	80 CSLV CSLV CSLV CQLK SQAW	YDLKAI YDLKAI YDLKAI EDFSSI DFVNSI	4PNG 4PNG 4PNG VQRG 7RDG	DLTEI DLTEI DLTEI DL <mark>RV</mark> V LETLV	GENG GENG GENG DEGG GNEG	VKLSGGQ INLSGGQ INLSGGQ CSLSGGQ GLLSGGQ	:	92 92 97 100
- Cpnbd1 CpABC_N CpABC1_N CpABC2_N	:::::::::::::::::::::::::::::::::::::::	* 6 TVRSNI TIRSNI TVRSNI SVRSAI TIRONI SLRENI	0 * ILDLP - ILDLP - LLGRE - LYGNEN LFGCQ -	FDQ FDQ FDQ FDQ WNRE IATEF	70 AWYDI AWYDI AWYDI SKYEL CEIEN SYYRS	* VINA VINA IVDC ALRL VIQA	80 CSLV CSLV CSLV CSLV CSLV CALL	YDLKAI YDLKAI YDLKAI EDFSS DFVNSI PDLEI	4PNG 4PNG 4PNG VQRG FRDG LPSG	DLTEI DLTEI DLTEI DL <mark>RV</mark> V LETLV D <mark>R</mark> TEI	GENG GENG DEGG GNEG GEKG	VKLSGGQ INLSGGQ INLSGGQ CSLSGGQ	:	92 92 97

Figure 2. Comparison of the amino acid sequences of Cpnbd1 and the NBDs of ABC proteins from *C. parvum* and *H. sapiens*. Similar amino acids shared by all, 70% and 50% of the aligned sequences, are boxed by black, dark grey and light grey, respectively.

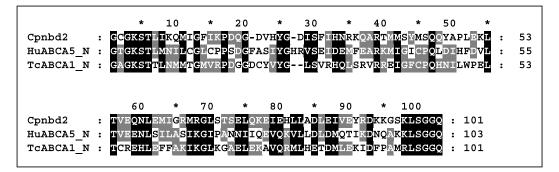


Figure 3. Comparison of the amino acid sequences of Cpnbd2 and the NBDs of ABC proteins from *C. parvum*, *H. sapiens* and *T. cruzi*. Similar amino acids shared by all and two of the aligned sequences, are boxed by black and dark grey, respectively.

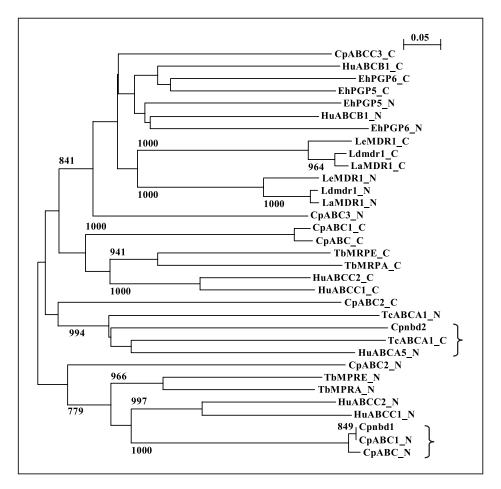


Figure 4. Phylogenetic relationship of NBDs among various ABC superfamily of proteins. Cpnbd1 is closely related to CpABC_N and CpABC1_N, the ABC proteins of *C. parvum* KSU-1 isolate and *C. parvum* SFGH1 isolate, respectively. Cpnbd2, however, is moderately related to the *T. cruzi* (TcABC1_C) and human (HuABCA5_N) ABC proteins.

Cpnbd2 did show significant high similarity to the NBDs at the NH_2 -terminal halves of two ABC proteins [the *H. sapien* ATPbinding cassette A5 (HuABCA5) and *T. cruzi* ABCA1 transporter (TcABCA1)]. It was 65% similar to HuABCA5_N and 59% similar to TcABCA1_N. However, neither the substrate nor the function of HuABCA5 and TcABCA1 is known (Dean *et al.*, 2001). The possible function of Cpnbd2, therefore, cannot be inferred from the phylogenetic analysis.

The study of ABC protein family in C. parvum is considered at its infancy as no functional study has thus far been conducted on any of the characterised ABC proteins of the parasite. In intracellular stages, CpABC1 is located at the host-parasite boundary of mature meronts. The location of CpABC1 suggests that it could be a component of one or more of the membranes (the meront plasma membrane, the parasitophorous vacuole membrane, or the feeder organelle) at the host-parasite boundary (Zapata et al., 2002). Similar observation was reported by Perkin et al. (1999) on CpABC. The peculiar location of CpABC and CpABC1, suggests that these proteins may play a role in metabolic interaction between the parasite and the infected host. The localisation of both proteins also correlates well and supports a role as drug efflux pumps that transport endogenous and xenobiotics away from the parasite.

Since some genes of the P-gp and MRP subfamilies of transporters have been associated with MDR phenomenon in cancer patients and certain drug resistance pathogens, the presence of such homologous protein in *C. parvum* may also attribute to the intrinsic MDR phenotype of the parasite.

Acknowledgements We would like to acknowledge the Ministry of Science, Technology and Innovation for granting the National Science Fellowship to Ms Li-Li Chan. This project was supported by the University of Malaya Vote F Research Grants F0132/2001A and F0194/2004A.

REFERENCES

- Ambudkar, S.V., Dey, S., Hrycyna, C.A., Ramachandra, M., Pastan, I. & Gottesman, M.M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology 39: 361–398.
- Chen, X.M., Keithly, J.S., Paya, C.V. & La Russo, N.F. (2002). Cryptosporidiosis. New England Journal of Medicine **346:** 1723–1731.
- Cole, S.P., & Deeley, R.G. (1993). Multidrug resistance-associated protein: sequence correction. *Science* **260**: 879.
- Cole, S.P., Sparks, K.E., Fraser, K., Loe, D.W., Grant, C.E., Wilson, G.M. & Deeley, R.G. (1994). Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. *Cancer Research* 54: 5902–5910.
- Dallagiovanna, B., Castanys, S. & Gamarro, F. (1994). Trypanosoma cruzi: sequence of the ATP-binding site of a P-glycoprotein gene. Experimental Parasitology 79: 63–67.
- Davidson, A.L. (2002). Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. *Journal of Bacteriology* 184: 1225–1233.
- Dean, M., Hamon, Y. & Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research **42:**1007– 1017.
- Dietrich, C.G., de Waart, D.R., Ottenhoff, R., Bootsma, A.H., van Gennip, A.H. & Elferink, R.P. (2001). Mrp2-deficiency in the rat impairs biliary and intestinal excretion and influences metabolism and disposition of the food-derived carcinogen 2-amino-1-methyl-6phenylimidazo. *Carcinogenesis* **22**: 805–811.
- Gao, M., Yamazaki, M., Loe, D.W., Westlake, C.J., Grant, C.E., Cole, S.P. & Deeley, R.G. (1998). Multidrug resistance protein. Identification of regions required for active transport of

leukotriene C4. *Journal of Biological Chemistry* **273**: 10733–10740.

- Griffiths, J.K. (1998). Human cryptosporidiosis: epidemiology, transmission, clinical disease, treatment, and diagnosis. Advance Parasitology **40**: 37–85.
- Higgins, C.F. (1992). ABC transporters: from microorganisms to man. *Annual Review of Cell Biology* **8**: 67–113.
- Hipfner, D.R., Deeley, R.G. & Cole, S.P. (1999). Structural, mechanistic and clinical aspects of MRP1. *Biochimica et Biophysica Acta* **1461**: 359–376.
- Juliano, R.L. & Ling, V. (1976). A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. *Biochimica et Biophysica Acta* **455**: 152–162.
- Mirski, S.E., Gerlach, J.H. & Cole, S.P. (1987). Multidrug resistance in a human small cell lung cancer cell line selected in adriamycin. *Cancer Research* **47**: 2594–2598.
- Payen, L., Sparfel, L., Courtois, A., Vernhet, L., Guillouzo, A. & Fardel, O. (2002). The drug efflux pump MRP2: regulation of expression in

physiopathological situations and by endogenous and exogenous compounds. *Cell Biology and Toxicology* **18:** 221–233.

- Perkins, M.E., Riojas, Y. A., Wu, T.W. & Le Blancq, S.M. (1999). CpABC, a Cryptosporidium parvum ATPbinding cassette protein at the hostparasite boundary in intracellular stages. Proceedings of the National Academy of Sciences USA 96: 5734– 5739.
- Taniguchi, K., Wada, M., Kohno, K., Nakamura, T., Kawabe, T., Kawakami, M., Kagotani, K., Okumura, K., Akiyama, S. & Kuwano, M. (1996). A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatinresistant human cancer cell lines with decreased drug accumulation. *Cancer Research* 56: 4124–4129.
- Zapata, F., Perkins, M.E., Riojas, Y.A., Wu, T.W. & Le Blancq, S.M. (2002). The *Cryptosporidium parvum* ABC protein family. *Molecular and Biochemical Parasitology* **120**: 157– 161.