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Abstract: The Variable-order fractional operators (VO-FO) have considered mathematically 

formalized recently. The opportunity of verbalizing evolutionary leading equations has led to the 

effective application to the modeling of composite physical problems ranging from mechanics to 

transport processes, to control theory, to biology. In this paper, find the closed form traveling wave 

solutions for nonlinear variable-order fractional evolution equations reveal in all fields of sciences 

and engineering. The variable-order evolution equation is an impressive mathematical model 

describes the complex dynamical problems. Here, we discuss space-time variable-order fractional 

modified equal width equation (MEWE) and used exp        method in the sense of Caputo 

fractional-order derivative. Based on variable order derivative and traveling wave transformation 

convert equation into nonlinear ordinary differential equation (ODE). As a result, constructed new 

exact solutions for nonlinear space-time variable-order fractional MEWE. It clearly shows that the 

nonlinear variable-order evolution equations are somewhat natural and efficient in mathematical 

physics. 
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1. Introduction 

Fractional order differential and integral operator is a generalization of traditional integer order 

integration and derivation gain more attention from the last two decades because of physical 

interpretation in different fields such as biology, economics, biochemistry, medicine, and engineering 

science. The idea of fractional calculus is old as classical calculus; first time was discussed by 

Leibniz and L’Hospital in 1965. Nonlinear fractional evolution equations describe the complex 

phenomena in different areas such as biology, acoustics, physics, finance, and fractional dynamics [1, 2]. 

Many researchers have solved linear, nonlinear, integers and fractional order problems by various 

numerical and analytical methods. Numerical methods such as finite fourth order difference methods 

are used by Ali et al. [3]. They solved the non-integer order sub-diffusion model and find the 

theoretical analysis of stability and convergence. In another literature [4], they used 2D diffusion 

equation of fractional order by Crank-Nicolson scheme. Jiang and Jingtan [5] developed the high 

order finite element approach for fractional order differential equation and find the rate of 

convergence order            . Srivastava et al. [6] discussed the local meshless method for 3D 

convection diffusion equation. They approximated the space derivatives based on meshless 

procedure and fractional order time derivative are by Caputo derivative. The 2D time fractional order 

differential equation is solved in [7–9], they used numerical approximation and discussed the 

stability and convergence analysis for the diffusion model of fractional order. Ahmad et el. [10] 

studied new and simple numerical approach for the fifth order KdV equation. Also, compared the 

obtained values with Adomian’s decomposition method and briefly explained the theoretical analysis 

to assess the accuracy. Ali and Abdullah [11] developed the Saul’yev technique explicitly for 2D 

diffusion model with stability analysis and provided test examples to demonstrate the accuracy. 

Ahmad et al. [12] suggested an efficient local differential quadrature technique for 2D hyperbolic 

telegraph equation. The time and space derivatives are approximated based on time integration 

technique and multiquadric radial basis, respectively. Balasim and Mohd Ali [13] worked on 2D 

fractional order Cable equation and find the solution by two numerical methods fully implicit and 

Crank-Nicolson method. Akgül [14] developed a novel approach based on reproducing kernel 

Hilbert space function and used Atanagana-Baleanu fractional derivatives. They solved fractional 

initial values problems to demonstrate the numerical results. Akgül et al. [15] considered the 

fractional order integrator circuit model and established a unique solution. They find out the stability 

analysis and numerical results of the proposed model by Atanaga-Toufik scheme. The new Caputo 

definition is discretized introduced by [16] having applications in control theory. Akgül [17] studied 

the solution of the fractional order differential model and used the Laplace transform to get the 

solution.  

The analytical effective methods to construct the solitary wave for differential equations such as 

Shang and Zheng [18] constructed all possible exact solutions by        method. Yokus et al. [19] 

solved the Bogoyavlenskii equation and used (G′/G, 1/G)-expansion and (1/G′)-expansion to find the 

exact traveling wave solution. Barman et al. [20] studied the interesting nonlinear equations Riemann 

wave and Novikov-Veselov that describes the tidal and tsunami types of waves in the ocean. The 

author’s implemented the generalized Kudryashov technique for the exact solution of the proposed 

equations and obtained various solitons. Jawad et al. [21] discussed the nonlinear evolution equations 

which describes the nerve propagation in biology and genetics. They applied the simple equation 

approach for the suggested equations and discussed the physical phenomena. In [22–24] authors 
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presented the (G′/G)-expansion to find the solitons solutions for the evolution equations and used the 

Jumaire’s definition for fractional order derivative. Bashan et al. [25] combined the finite difference 

procedure (FDP) with quadratic differential scheme (QDS) to discuss the solution of modified wave 

type physical phenomenon. They obtained and discussed the solitary wave nature solution. They 

recorded and listed the error norms and solution is displayed against several emerging parameters in 

the form of graphs. Modified spline technique (MST) has been adopted by Bashan et al. [26] to 

compute the soliton solution of nonlinear Schrodinger equation. They examined the efficiency and 

effectiveness of proposed procedure for five different problems and found an excellent agreement 

while computing the error norms. Few important contributions are covered in [27–30]. The three 

models of shallow water wave equations are determined by Wazwaz [31]. The Hirota bilinear 

approach was used for multiple solitons solutions and the coth-tanh for single soliton solution. 

Hosseini et al. [32] considered the special type of mathematical model (3+1)-dimensional breaking 

solitons equation and used the linear superposition method. The method shown high efficiency and 

strongly handled the nonlinear model. In the said literature partial and fractional order differential 

equations are solved successfully. Fractional order is sometime a function of dependent or 

independent variables which are more appropriate to discuss the diffusion processes in porous 

medium and medium structure [33]. The reaction kinetics of proteins has been originated to show 

simple mechanisms that are accurately defined by fractional order changes with temperature [34]. 

These examples show that the variable-order operator describes some classes of physical models 

better than fractional order. In the review article Sun et al. [35] provided basics definitions, models, 

numerical techniques, and their applications. So far, in the previous literature many researchers have 

solved the variable-order fractional evolution equations by various numerical methods such as 

Shekari [36] solved the 2D time fractional variable-order wave equation base on numerical moving 

least squares approach for different domain. The resulted solution confirmed the efficiency and easy 

implementation on variable order models. Chen et al. [37] focused on the variable order Stokes first 

problem and found the solution numerically. Also, discussed the theoretical analysis via Fourier 

series. The theoretical analysis supported the obtained numerical solution. The advection-diffusion 

equation of variable-order are solved with nonlinear forcing term explicitly and implicitly by 

Zhuang [38]. Chen et al. [39] considered the anomalous diffusion of variable order equation with 

numerical algorithm. The theoretical analysis of stability, convergence and solvability via Fourier 

were discussed. The numerical solutions were effective, and the proposed scheme is powerful for 

such types of variable order models. The studies reported in [46–48] discussed the chaotic analysis 

by using the fractional operators. 

The aim of this paper to extend the closed form traveling waves solution to the nonlinear 

variable-order fractional evolution equations. Here, we solve nonlinear space-time variable-order 

fractional MEWE based on variable-order Caputo derivative by exp         method. The 

variable-order problems are apparently more complicated than a constant fractional order problem, 

and evolution of a system can be more accurately described. This contribution seems natural and 

modeled many systems with variable-order [40]. The closed form solutions for variable-order 

evolution equations are to the author’s knowledge unavailable and we hope that it a good 

contribution to the literature. Few important contributions relating the concepts of variable order 

fractional operators and other related studies are reported in [49–70]. 
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2. Caputo fractional derivative 

The Caputo fractional derivative operator is discussed many times in the literature. Moreover, 

the variable-order fractional operators [49–52] are progressively discussed and established more 

definitions by researchers [41–44]. Here, the variable-order Caputo fractional derivative as follows: 
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And the properties are as follows: 
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3. Methodology of exp        method 

Consider the following nonlinear variable order FPDE of order                         and 

            is given by the form: 
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Where Eq (3) represents a polynomial   in   and the fractional derivatives represented by the 

variable order                         and            . The linear and nonlinear of highest order 

terms are involved in the FPDE. The exp        method explained briefly as following [45]. 

Taking the variable order fractional transformation equation. 
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Transforms Eq (3) into an ODE with respect to   as follows: 

                                            (5) 

Here     and   are constants. Let the solution is in the form: 

                                          (6) 

Where   is calculated by using homogenous balance principle and      is a function that satisfies 

a first order equation as 

                            + ,       (7) 

The all-possible solution of Eq (7) is as following: 

Case 1. If         and      then 
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Case 2. If               then 

          
 

                           
   

Case 3. If          then 

         
 

  
            

      

 
            

Case 4. If               and      then 

          
         

       
   

Case 5. If               and      then 

               

Substituting the values of constants and solution of Eq (7) in (6), we obtained the exact 

solutions of (3). 

4. Formulation for the solutions of modified equal width equation 

The MEWEs are utilized for the reproduction of wave transmission in the nonlinear media and 

represents soliton wave solutions with both  ve and  ve amplitudes and having equal width. Here, 

we apply the proposed method to study nonlinear space-time variable order fractional MEWE, and 

construct traveling wave solution based on exp        method. 

Consider the variable-order fractional MEWE as follows: 
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Using as   
        

           
 

        

           
, Eq (8) reduces to 
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By balancing the uppermost nonlinear term      with the uppermost linear term with     we obtain 

     Therefore Eq (6) becomes: 

                 .        (10) 

Inserting (10), into (9) in term of             Equating the like powers of             
 

  obtained 

the system of equations given in the following. 
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Solving the above system of equations by using computer algebra and obtained 
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where         and   are arbitrary constants. 

Substituting (11) into (10), we obtained 

   
 

 
                         (12) 

Now, substituting the solutions of Eq (7), we can obtain five kinds of distinct traveling wave 

solutions for the variable order fractional MEWE (8).  

Here, for variable-order factional modified equal width equation we are writing three cases for 

Eq (8), we obtain. 

Case 1. If          and      Then 
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Case 6. If          and      Then 

   

                
 

 
       

         

                    
 
  
                 

             
          

            
 

 
       

         

                    
 
  
                 

             
      

     

5. Graphical representation 

Lu et al. [71] constructed the exact traveling wave solution for modified equal width equation in 

the form of dark, bright, periodic and kink solitary wave solution. However, in the present study the 

graphical representation discussed for various values of        and        as shown in Figures 1–5 

for Eq (8), with the help of software Maple15. The obtained 3D plots are supported the soliton solution 

of variable-order fractional modified equal width equation for different values of the unknown 

parameters                 and fractional order derivatives            and           , 
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obtained Periodic, Kink and singular soliton type solutions for different values of parameters as 

following. 

 

Figure 1. Soliton solution of Eq (8) for    at                            
              

   
        

             

  
                     shown in 3D plot. 

 

Figure 2. Singular shape solution of Eq (8) for    at                 

                
  

 
                

 

   
                   shown 

in 3D plot. 



10063 

AIMS Mathematics  Volume 6, Issue 9, 10055–10069. 

 

(a)           (b)       

Figure 3. Singular shape solution of Eq (8) for    at                     
                     shown in 3D plot. (a) 
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(a)           (b)       

Figure 4. Periodic and Kink types of soliton solution of Eq (8) for    at          
                              shown in 3D plot. (a)        
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(a)           (b)       

Figure 5. Singular and Kink shape soliton solution of Eq (8) for    at          
                              shown in 3D plot. (a)        
           

 
        

           

  
  (b)                

  

 
                 

3100. 

6. Conclusions 

In this paper, the nonlinear variable-order fractional evolution equation successfully solved and 

obtained new exact traveling wave solutions. This study shows that the variable-order fractional 

evolution equations are quite efficient and accurate. Here, nonlinear space-time variable-order 

fractional MEWE has solved successfully and constructed the possible exact solutions. Periodic, 

Kink and singular soliton type solutions are obtained for arbitrary values of variable order 

       and        for the proposed variable-order model in fractional sense. This contribution is 

effective and seems more natural in the literature. The reported study will be extended by 

considering the fractional and variable order fractional operator for the modelling of conservation 

laws in different situations. So far no one considered the modeling of conservation laws in variable 

order. The future project will be a foundation in that direction.  
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