Dinshaw, Ignatius Julian and Ahmad, Noraini and Salim, Norazlinaliza and Leo, Bey Fen (2021) Nanoemulsions: A review on the conceptualization of treatment for psoriasis using a `green' surfactant with low-energy emulsification method. Pharmaceutics, 13 (7). ISSN 1999-4923, DOI https://doi.org/10.3390/pharmaceutics13071024.
Full text not available from this repository.Abstract
Psoriasis is a skin disease that is not lethal and does not spread through bodily contact. However, this seemingly harmless condition can lead to a loss of confidence and social stigmatization due to a persons' flawed appearance. The conventional methods of psoriasis treatment include taking in systemic drugs to inhibit immunoresponses within the body or applying topical drugs onto the surface of the skin to inhibit cell proliferation. Topical methods are favored as they pose lesser side effects compared to the systemic methods. However, the side effects from systemic drugs and low bioavailability of topical drugs are the limitations to the treatment. The use of nanotechnology in this field has enhanced drug loading capacity and reduced dosage size. In this review, biosurfactants were introduced as a `greener' alternative to their synthetic counterparts. Glycolipid biosurfactants are specifically suited for anti-psoriatic application due to their characteristic skin-enhancing qualities. The selection of a suitable oil phase can also contribute to the anti-psoriatic effect as some oils have skin-healing properties. The review covers the pathogenic pathway of psoriasis, conventional treatments, and prospective ingredients to be used as components in the nanoemulsion formulation. Furthermore, an insight into the state-of-the-art methods used in formulating nanoemulsions and their progression to low-energy methods are also elaborated in detail.
Item Type: | Article |
---|---|
Funders: | Ministry of Higher Education Malaysia (MOHE) through the Fundamental Research Grant Scheme (FP037-2019A) |
Uncontrolled Keywords: | Psoriasis; Anti-psoriatic agent; Nanoemulsion; Biosurfactant; Low-energy emulsification |
Subjects: | Q Science > QD Chemistry R Medicine > RM Therapeutics. Pharmacology |
Divisions: | Faculty of Science > Department of Chemistry |
Depositing User: | Ms. Juhaida Abd Rahim |
Date Deposited: | 21 Mar 2022 03:05 |
Last Modified: | 21 Mar 2022 03:05 |
URI: | http://eprints.um.edu.my/id/eprint/26574 |
Actions (login required)
View Item |