A four-parameter negative binomial-Lindley distribution for modeling over and underdispersed count data with excess zeros

Tajuddin, Razik Ridzuan Mohd and Ismail, Noriszura and Ibrahim, Kamarulzaman and Abu Bakar, Shaiful Anuar (2022) A four-parameter negative binomial-Lindley distribution for modeling over and underdispersed count data with excess zeros. Communications in Statistics - Theory and Methods, 51 (2). pp. 414-426. ISSN 0361-0926, DOI https://doi.org/10.1080/03610926.2020.1749854.

Full text not available from this repository.

Abstract

Count data often exhibits the property of dispersion and have large number of zeros. In order to take these properties into account, a new generalized negative binomial-Lindley distribution with four parameters is proposed, of which the two-parameter and three-parameter negative binomial-Lindley distributions are special cases. Several statistical properties of the proposed distribution are presented. The dispersion index for the proposed distribution is derived and based on the index, it is clear that the proposed distribution can adequately fit the data with properties of overdispersion or underdispersion depending on the choice of the parameters. The proposed distribution is fitted to three overdispersed datasets with large proportion of zeros. The best fitted model is selected based on the values of AIC, mean absolute error and root mean squared error. From the model fittings, it can be concluded that the proposed distribution outperforms Poisson and negative binomial distributions in fitting the count data with overdispersion and large number of zeros.

Item Type: Article
Funders: Ministry of Education, Malaysia (FRGS/1/2019/STG06/UKM/01/5), Universiti Kebangsaan Malaysia (GUP-2019-031)
Uncontrolled Keywords: Discrete distribution; dispersed count data; Large number of zeros; Mixed negative binomial
Subjects: Q Science > QA Mathematics
Divisions: Faculty of Science > Institute of Mathematical Sciences
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 23 Feb 2022 01:05
Last Modified: 23 Feb 2022 02:43
URI: http://eprints.um.edu.my/id/eprint/26356

Actions (login required)

View Item View Item