Effective surface properties of light, heavy, and superheavy nuclei

Quddus, Abdul and Bhuyan, Mrutunjaya and Patra, S.K. (2020) Effective surface properties of light, heavy, and superheavy nuclei. Journal of Physics G: Nuclear and Particle Physics, 47 (4). 045105. ISSN 0954-3899

Full text not available from this repository.
Official URL: https://doi.org/10.1088/1361-6471/ab4f3e


Starting from light to superheavy nuclei, we have calculated the effective surface properties such as the symmetry energy, neutron pressure, and symmetry energy curvature using the coherent density fluctuation model. The isotopic chains of O, Ca, Ni, Zr, Sn, Pb, and Z = 120 are considered in the present analysis, which cover nuclei over the whole nuclear chart. The matter density distributions of these nuclei along with the ground state bulk properties are calculated within the spherically symmetric effective field theory motivated relativistic mean field model by using the recently developed IOPB-I, FSUGarnet, and G3 parameter sets. The calculated results are compared with the predictions of the widely used NL3 parameter set and found to be in good agreement. We observe a few signatures of shell and/or sub-shell structure in the isotopic chains of nuclei. The present investigations are quite relevant for the synthesis of exotic nuclei with high isospin asymmetry, including superheavy nuclei, and also to constrain an equation of state of nuclear matter. © 2020 IOP Publishing Ltd.

Item Type: Article
Uncontrolled Keywords: CDFM; exotic and superheavy nuclei; nuclear structure; RMF; Surface properties of nuclei; symmetry energy
Subjects: Q Science > Q Science (General)
Q Science > QC Physics
Divisions: Faculty of Science > Dept of Physics
Depositing User: Ms. Juhaida Abd Rahim
Date Deposited: 17 Aug 2020 03:37
Last Modified: 17 Aug 2020 03:37
URI: http://eprints.um.edu.my/id/eprint/25375

Actions (login required)

View Item View Item